精英家教网 > 高中数学 > 题目详情
已知圆O:x2+y2=1,点P在直线l:2x+y-3=0上,过点P作圆O的两条切线,A,B为两切点.
(1)求切线长PA的最小值,并求此时点P的坐标;
(2)点M为直线y=x与直线l的交点,若在平面内存在定点N(不同于点M),满足:对于圆 O上任意一点Q,都有
QN
QM
为一常数,求所有满足条件的点N的坐标.
(3)求
PA
PB
的最小值.
分析:(1)由勾股定理得:|PO|2=R2+|PA|2,半径R=1,所以要求|PA|最小,就是求|PO|最短,而|PO|最短时,OP垂直于直线2x+y-3=0,由此可得结论;
(2)由直线y=x与直线l:2x+y-3=0联立,可得交点坐标M(1,1),设Q(m,n),N(x,y),利用
QN
QM
为一常数,建立等式,根据Q的任意性,即可求得结论;
(3)由题意,四点P,A,O,B共圆,当且仅当圆与直线相切时,|PA|最小,∠APB最大,
PA
PB
取得最小值.
解答:解:(1)由勾股定理得:|PO|2=R2+|PA|2,半径R=1,所以要求|PA|最小,就是求|PO|最短,
而|PO|最短时,OP垂直于直线2x+y-3=0,所以最短|OP|=
|0+0-3|
4+1
=
3
5

所以|PA|2=|PO|2-R2=
4
5

即|PA|最小时,|PA|=
2
5
5

直线2x+y-3=0的斜率是k=-2,则PO的斜率是k'=
1
2
,所以OP方程是y=
x
2

将方程y=
x
2
与直线2x+y-3=0联立,解得:x=
6
5
,故有y=
3
5
,即点P坐标是(
6
5
3
5
);
(2)由直线y=x与直线l:2x+y-3=0联立,可得交点坐标M(1,1),设Q(m,n),N(x,y)
QN
QM
=
(x-m)2+(y-n)2
(m-1)2+(n-1)2
(λ≠1)
∴m(2λ-2x)+n(2λ-2y)+x2+y2-3λ+1=0
∵对于圆 O上任意一点Q,都有
QN
QM
为一常数,
2λ-2x=0
2λ-2y=0
x2+y2-3λ+1=0
,解得x=y=λ=
1
2

∴N(
1
2
1
2

(3)由题意,四点P,A,O,B共圆,当且仅当圆与直线相切时,|PA|最小,∠APB最大,
PA
PB
取得最小值
由(1)知P坐标是(
6
5
3
5
);
设A(a,b),则过A的切线方程为:ax+by=1,将(
6
5
3
5
)代入可得
6
5
a+
3
5
b=1

∵a2+b2=1
∴a=
10+2
5
15
,b=
5-4
5
15
,或a=
10-2
5
15
,b=
5+4
5
15

PA
PB
=(
10+2
5
 
-
6
5
5-4
5
15
-
3
5
)•(
10-2
5
15
-
6
5
5+4
5
15
-
3
5
)=-
4
45
点评:本题考查圆的切线,考查直线与圆的位置关系,考查向量知识的运用,考查学生分析解决问题的能力,综合性强.
练习册系列答案
相关习题

科目:高中数学 来源: 题型:

精英家教网已知圆O:x2+y2=2交x轴于A,B两点,曲线C是以AB为长轴,离心率为
2
2
的椭圆,其左焦点为F.若P是圆O上一点,连接PF,过原点O作直线PF的垂线交椭圆C的左准线于点Q.
(1)求椭圆C的标准方程;
(2)若点P的坐标为(1,1),求证:直线PQ与圆O相切;
(3)试探究:当点P在圆O上运动时(不与A、B重合),直线PQ与圆O是否保持相切的位置关系?若是,请证明;若不是,请说明理由.

查看答案和解析>>

科目:高中数学 来源: 题型:

精英家教网已知圆o:x2+y2=b2与椭圆
x2
a2
+
y2
b2
=1(a>b>0)
有一个公共点A(0,1),F为椭圆的左焦点,直线AF被圆所截得的弦长为1.
(1)求椭圆方程.
(2)圆o与x轴的两个交点为C、D,B( x0,y0)是椭圆上异于点A的一个动点,在线段CD上是否存在点T(t,0),使|BT|=|AT|,若存在,请说明理由.

查看答案和解析>>

科目:高中数学 来源: 题型:

已知圆O:x2+y2=9,定点 A(6,0),直线l:3x-4y-25=0
(1)若P为圆O上动点,求线段PA的中点M的轨迹方程
(2)设E、F分别是圆O和直线l上任意一点,求线段EF的最小值.

查看答案和解析>>

科目:高中数学 来源: 题型:

(2012•广州一模)已知圆O:x2+y2=r2,点P(a,b)(ab≠0)是圆O内一点,过点P的圆O的最短弦所在的直线为l1,直线l2的方程为ax+by+r2=0,那么(  )

查看答案和解析>>

科目:高中数学 来源: 题型:

已知圆O:x2+y2=1,点P在直线x=
3
上,O为坐标原点,若圆O上存在点Q,使∠OPQ=30°,则点P的纵坐标y0的取值范围是(  )

查看答案和解析>>

同步练习册答案