【题目】如图,椭圆 的左右焦点分别为的、,离心率为;过抛物线焦点的直线交抛物线于、两点,当时, 点在轴上的射影为。连结并延长分别交于、两点,连接; 与的面积分别记为, ,设.
(Ⅰ)求椭圆和抛物线的方程;
(Ⅱ)求的取值范围.
【答案】(1) ,;(2) .
【解析】试题分析:(Ⅰ )由题意得得,根据点M在抛物线上得,又由,得 ,可得,解得,从而得,可得曲线方程。(Ⅱ )设, ,分析可得,先设出直线的方程为 ,由,解得,从而可求得,同理可得,故可将化为m的代数式,用基本不等式求解可得结果。
试题解析:
(Ⅰ)由抛物线定义可得,
∵点M在抛物线上,
∴,即 ①
又由,得
将上式代入①,得
解得
∴
,
所以曲线的方程为,曲线的方程为。
(Ⅱ)设直线的方程为,
由消去y整理得,
设, .
则,
设, ,
则,
所以, ②
设直线的方程为 ,
由,解得,
所以,
由②可知,用代替,
可得,
由,解得,
所以,
用代替,可得
所以
,当且仅当时等号成立。
所以的取值范围为.
科目:高中数学 来源: 题型:
【题目】2017年9月16日05时,第19号台风“杜苏芮”的中心位于甲地,它以每小时30千米的速度向西偏北的方向移动,距台风中心千米以内的地区都将受到影响,若16日08时到17日08时,距甲地正西方向900千米的乙地恰好受台风影响,则和的值分别为(附: )( )
A. B. C. D.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】经市场调查,某城市的一种小商品在过去的近20天内的销售量(件)与价格(元)均为时间t(天)的函数,且销售量近似满足g(t)=80﹣2t(件),价格近似满足于 (元).
(1)试写出该种商品的日销售额y与时间t(0≤t≤20)的函数表达式;
(2)求该种商品的日销售额y的最大值与最小值.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】如图,椭圆的离心率为,顶点为,且.
(1)求椭圆的方程;
(2)是椭圆上除顶点外的任意点,直线交轴于点,直线交于点.设的斜率为, 的斜率为,试问是否为定值?并说明理由.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】平面内动点P(x,y)与两定点A(-2, 0), B(2,0)连线的斜率之积等于,若点P的轨迹为曲线E,过点Q作斜率不为零的直线交曲线E于点.
(I)求曲线E的方程;
(II)求证: ;
(III)求面积的最大值.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】已知二次函数t满足f(0)=f(2)=2,f(1)=1.
(1)求函数f(x)的解析式;
(2)当x∈[﹣1,2]时,求y=f(x)的值域;
(3)设h(x)=f(x)﹣mx在[1,3]上是单调函数,求m的取值范围.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】如图椭圆的上下顶点为A、B,直线: ,点P是椭圆上异于点A、B的任意一点,连结AP并延长交直线于点N,连结BP并延长交直线于点M,设AP、BP所在直线的斜率分别为,若椭圆的离心率为,且过点,(1)求的值,并求最小值;(2)随着点P的变化,以MN为直径的圆是否恒过定点,若过定点,求出该定点坐标;若不过定点,请说明理由。
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】传承传统文化再掀热潮,央视科教频道以诗词知识竞赛为主的《中国诗词大会》火爆荧屏。将中学组和大学组的参赛选手按成绩分为优秀、良好、一般三个等级,随机从中抽取了100名选手进行调查,下面是根据调查结果绘制的选手等级人数的条形图.
(Ⅰ)若将一般等级和良好等级合称为合格等级,根据已知条件完成下面的2×2列联表,并据此资料你是否有95﹪的把握认为选手成绩“优秀”与文化程度有关?
优秀 | 合格 | 合计 | |
大学组 | |||
中学组 | |||
合计 |
注: ,其中.
0.10 | 0.05 | 0. 005 | |
2.706 | 3.841 | 7.879 |
(Ⅱ)若江西参赛选手共80人,用频率估计概率,试估计其中优秀等级的选手人数;
(Ⅲ)如果在优秀等级的选手中取4名,在良好等级的选手中取2名,再从这6人中任选3人组成一个比赛团队,求所选团队中的有2名选手的等级为优秀的概率.
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com