科目:高中数学 来源: 题型:
3 |
查看答案和解析>>
科目:高中数学 来源:2012届重庆市“名校联盟”高二第一次联考文科数学试卷(解析版) 题型:解答题
已知两条直线与的交点为P,直
线的方程为:.
(1)求过点P且与平行的直线方程;
(2)求过点P且与垂直的直线方程.
查看答案和解析>>
科目:高中数学 来源:2011-2012学年浙江省高三5月模拟考试理科数学试卷(解析版) 题型:解答题
已知椭圆的离心率为,直线:与以原点为圆心、以椭圆的短半轴长为半径的圆相切.
(1)求椭圆的方程;
(2)设椭圆的左焦点为,右焦点,直线过点且垂直于椭圆的长轴,动直线垂
直于点,线段垂直平分线交于点,求点的轨迹的方程;
(3)当P不在轴上时,在曲线上是否存在两个不同点C、D关于对称,若存在,
求出的斜率范围,若不存在,说明理由。
查看答案和解析>>
科目:高中数学 来源:河北省高三下学期第二次考试数学(文) 题型:解答题
(本题满分12分)已知椭圆的离心率为,
直线与以原点为圆心、以椭圆的短半轴长为半径的圆相切。
(Ⅰ)求椭圆的方程;
(Ⅱ)设椭圆的左焦点为F1,右焦点为F2,直线过点F1,且垂直于椭圆的长轴,动直
线垂直于点P,线段PF2的垂直平分线交于点M,求点M的轨迹C2的方程;
(Ⅲ)若AC、BD为椭圆C1的两条相互垂直的弦,垂足为右焦点F2,求四边形ABCD的面积
的最小值.
查看答案和解析>>
科目:高中数学 来源:河北省高三下学期第二次考试数学(文) 题型:解答题
(本题满分12分)已知椭圆的离心率为,
直线与以原点为圆心、以椭圆的短半轴长为半径的圆相切。
(Ⅰ)求椭圆的方程;
(Ⅱ)设椭圆的左焦点为F1,右焦点为F2,直线过点F1,且垂直于椭圆的长轴,动直
线垂直于点P,线段PF2的垂直平分线交于点M,求点M的轨迹C2的方程;
(Ⅲ)若AC、BD为椭圆C1的两条相互垂直的弦,垂足为右焦点F2,求四边形ABCD的面积
的最小值.
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com