精英家教网 > 高中数学 > 题目详情
13.已知函数f(x)=ln(x+a)-sinx.给出下列命题:
①当a=0时,?x∈(0,e),都有f(x)<0;
②当a≥e时,?x∈(0,+∞),都有f(x)>0;
③当a=1时,?x0∈(2,+∞),使得f(x0)=0.
其中真命题的个数是(  )
A.0B.1C.2D.3

分析 根据函数值得特点,逐一判断即可.

解答 解:对于①当a=0时,f(x)=lnx-sinx,当x=$\frac{5π}{6}$时,f($\frac{5π}{6}$)=ln$\frac{5π}{6}$-sin$\frac{5π}{6}$>ln$\sqrt{e}$-$\frac{1}{2}$=0,故不正确,
对于②a≥e时,?x∈(0,+∞),ln(x+a)>lne=1,-1≤sinx≤1,则f(x)>0恒成立,故正确,
对于③当a=1时,f(x)=ln(x+1)-sinx,当x>2时,x+1>3,故ln(x+1)>1,故f(x)>0恒成立,故不正确,
故选:B

点评 本题考查了函数的单调性和命题的真假,属于基础题.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:填空题

14.已知$f(x)=\left\{\begin{array}{l}{2^x}-3,x>0\\ g(x),x<0\end{array}\right.$是奇函数,则f(g(-2))=1.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

4.若f(x)是R上的偶函数,g(x)是R上的奇函数,给出下列四个结论:
(1)f(x)|g(x)|是R上的偶函数;(2)|f(x)|g(x)是R上的偶函数;(3)f(x)•g(x)是R上的奇函数;(4)f(x)-g(x)是R上的偶函数:其中正确的结论个数有(  )个.
A.1B.2C.3D.4

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

1.已知定义在R上的函数f(x)=$\left\{\begin{array}{l}{{x}^{2}-6ax-1,x≤1}\\{{a}^{x}-7,x>1}\end{array}\right.$,对任意x1≠x2,都有$\frac{f({x}_{1})-f({x}_{2})}{{x}_{1}-{x}_{2}}$<0,则实数a的取值范围是(  )
A.($\frac{1}{3}$,1)B.[$\frac{1}{3}$,1)C.(0,$\frac{1}{3}$)D.(0,$\frac{1}{3}$]

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

8.如图,在三棱柱V-ABC中,平面VAB⊥平面ABC,△VAB为等边三角形,AC⊥BC且AC=BC=$\sqrt{2}$,O,M分别为AB,VA的中点.
(1)求证:AB∥MOC;
(2)求证:平面MOC⊥平面VAB;
(3)求二面角M-OC-A的大小.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

18.如图,三棱柱ABC-A1B1C1中,AC=BC,AB=AA1,∠A1AB=60°,D是AB的中点.
(Ⅰ)求证:BC1∥平面A1CD;
(Ⅱ)求证:AB⊥平面A1CD;
(Ⅲ)若AB=AC=2,${A_1}C=\sqrt{6}$,求三棱柱ABC-A1B1C1的体积.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

5.复数z=$\frac{3+2i}{i}$ (i为虚数单位)的虚部为(  )
A.3B.-3C.-3iD.2

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

2.若直线ax+2y+4=0与直线x+y-2=0互相垂直,那么a的值为-2.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

3.已知双曲线$\frac{x^2}{4}-\frac{y^2}{b^2}=1(b>0)$的一条渐近线方程为3x+2y=0,则b等于3.

查看答案和解析>>

同步练习册答案