精英家教网 > 高中数学 > 题目详情

【题目】如图,平面平面 直线 内不同的两点, 内不同的两点,且直线分别是线段的中点,下列判断正确的是( )

A. 时, 两点不可能重合

B. 两点可能重合,但此时直线不可能相交

C. 相交,直线平行于时,直线可以与相交

D. 是异面直线时,直线可能与平行

【答案】B

【解析】由位置关系判断就可,本题宜用直接法来进行判断,B项正确易证
解答:对于A选项,当|CD|=2|AB|时,若A,B,C,D四点共面ACBD时,则M,N两点能重合.故A不对
对于B选项,若M,N两点可能重合,则ACBD,故ACl,此时直线AC与直线l不可能相交,故B
对于C选项,当ABCD相交,直线AC平行于l时,直线BD可以与l平行,故C不对
对于D选项,当AB,CD是异面直线时,MN不可能与l平行,故选B.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:

【题目】已知椭圆 曲线上的动点满足:

.

1)求曲线的方程;

2)设为坐标原点,第一象限的点分别在上, ,求线段的长.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】如图所示, 是边长为3的正方形, 平面与平面所成角为.

(Ⅰ)求证: 平面

(Ⅱ)设点是线段上一个动点,试确定点的位置,使得平面,并证明你的结论.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知函数f(x)的定义域为[7,15),设f(2x+1)的定义域为A,B={x|x<a或x>a+1},若A∪B=R,求实数a的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知函数.

(1)当时,判断的单调性;

(2)若上为单调增函数,求实数 的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知函数,其中常数

1)当时,求函数的单调递增区间;

2)设定义在上的函数在点处的切线方程为,若内恒成立,则称为函数类对称点,当时,试问是否存在类对称点,若存在,请至少求出一个类对称点的横坐标;若不存在,请说明理由.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知g(x)=﹣x2﹣3,f(x)是二次函数,f(x)+g(x)是奇函数,且当x∈[﹣1,2]时,f(x)的最小值为1,求f(x)的表达式.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知函数f(x)=e|x|+|x|,若关于x的方程f(x)=k有两个不同的实根,则实数k的取值范围是

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知二次函数f(x)的最小值为1,且f(0)=f(2)=3.
(1)求f(x)的解析式;
(2)若f(x)在区间[2a,a+1]上不单调,求实数a的取值范围;
(3)在区间[﹣1,1]上,y=f(x)的图象恒在y=2x+2m+1的图象上方,试确定实数m的取值范围.

查看答案和解析>>

同步练习册答案