精英家教网 > 高中数学 > 题目详情

【题目】设f(x)与g(x)是定义在同一区间[a,b]上的两个函数,若函数y=f′(x)﹣g(x)(f′(x)为函数f(x)的导函数)在[a,b]上有且只有两个不同的零点,则称f(x)是g(x)在[a,b]上的“关联函数”.若f(x)= +4x是g(x)=2x+m在[0,3]上的“关联函数”,则实数m的取值范围是(
A.
B.[﹣1,0]
C.(﹣∞,﹣2]
D.

【答案】A
【解析】解:f′(x)=x2﹣3x+4,∵f(x)与g(x)在[0,3]上是“关联函数”,
故函数y=h(x)=f′(x)﹣g(x)=x2﹣5x+4﹣m在[0,3]上有两个不同的零点,
故有 ,即 ,解得﹣ <m≤﹣2,
故选:A.
【考点精析】关于本题考查的基本求导法则,需要了解若两个函数可导,则它们和、差、积、商必可导;若两个函数均不可导,则它们的和、差、积、商不一定不可导才能得出正确答案.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:

【题目】如图,DE是⊙O的直径,过⊙O上的点C作直线AB,交ED的延长线于点B,且OA=OB,CA=CB,连结EC,CD.

(1)求证:直线AB是⊙O的切线;
(2)若tan∠CED= ,⊙O的半径为3,求OA的长.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知集合M={(x,y)|y=f(x)},若对于任意(x1 , y1)∈M,存在(x2 , y2)∈M,使得x1x2+y1y2=0成立,则称集合M是“垂直对点集”.给出下列四个集合:
①M={ };
②M={(x,y)|y=sinx+1};
③M={(x,y)|y=log2x};
④M={(x,y)|y=ex﹣2}.
其中是“垂直对点集”的序号是(
A.①②
B.②③
C.①④
D.②④

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】极坐标系中椭圆C的方程为ρ2= ,以极点为原点,极轴为x轴非负半轴,建立平面直角坐标系,且两坐标系取相同的单位长度.
(1)求该椭圆的直角标方程,若椭圆上任一点坐标为P(x,y),求x+ y的取值范围;
(2)若椭圆的两条弦AB,CD交于点Q,且直线AB与CD的倾斜角互补,求证:|QA||QB|=|QC||QD|.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】在如图的表格中,每格填上一个数字后,使每一横行成等差数列,每一纵列成等比数列,则abc的值为(  )

A. 1 B. 2 C. 3 D. 4

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知函数
(Ⅰ)求f(x)的单调递减区间;
(Ⅱ)设α是锐角,且 ,求f(α)的值.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知(a>0,且a≠1).

(1)讨论f(x)的奇偶性;

(2)a的取值范围,使f(x)>0在定义域上恒成立.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知函数为二次函数,不等式的解集,且在区间上的最大值为12.

(1)求函数的解析式;

(2)设函数上的最小值为,求的表达式及的最小值.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知下列四个命题:

①若tan θ=2,则sin 2θ

②函数f(x)=lg(x)是奇函数;

③“a>b”是“2a>2b”的充分不必要条件;

④在△ABC中,若sin Acos B=sin C,则△ABC是直角三角形.

其中所有真命题的序号是________

查看答案和解析>>

同步练习册答案