【题目】已知抛物线E:y2=2px(p>0)的准线与x轴交于点K,过点K作圆C:(x﹣2)2+y2=1的两条切线,切点为M,N,|MN|=
(1)求抛物线E的方程
(2)设A、B是抛物线E上分别位于x轴两侧的两个动点,且 = (其中O为坐标原点)
①求证:直线AB必过定点,并求出该定点Q的坐标
②过点Q作AB的垂线与抛物线交于G、D两点,求四边形AGBD面积的最小值.
【答案】
(1)解:由已知可得K(﹣ ,0),圆C:(x﹣2)2+y2=1的圆心C(2,0),半径r=1.
设MN与x轴交于R,由圆的对称性可得|MR|= ,
于是|CR|= = = ,
即有|CK|= = = =3,
即有2+ =3,解得p=2,则抛物线E的方程为y2=4x
(2)①证明:设直线AB:x=my+t,A( ,y1),B( ,y2),
联立抛物线方程可得y2﹣4my﹣4t=0,
y1+y2=4m,y1y2=﹣4t,
= ,即有( )2+y1y2= ,
解得y1y2=﹣18或2(舍去),
即﹣4t=﹣18,解得t= .
则有AB恒过定点Q( ,0);
②解:由①可得|AB|= |y2﹣y1|= ,
同理|GD|= |y2﹣y1|= ,
则四边形AGBD面积S= |AB||GD|=
=4 ,
令m2+ =μ(μ≥2),则S=4 是关于μ的增函数,
则当μ=2时,S取得最小值,且为88.
当且仅当m=±1时,四边形AGBD面积的最小值为88
【解析】(1)求得K的坐标,圆的圆心和半径,运用对称性可得MR的长,由勾股定理和锐角的三角函数,可得CK=3,再由点到直线的距离公式即可求得p=2,进而得到抛物线方程;(2)①设出直线方程,榴莲么抛物线方程,运用韦达定理和向量的数量积的坐标表示,化简整理,即可得到定点Q;
②运用弦长公式和四边形的面积公式,换元整理,结合基本不等式,即可求得最小值.
科目:高中数学 来源: 题型:
【题目】已知函数.
(1)若函数在定义域单调递增,求实数的取值范围;
(2)令, ,讨论函数的单调区间;
(3)如果在(1)的条件下, 在内恒成立,求实数的取值范围.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】如图,抛物线E:y2=4x的焦点为F,准线l与x轴的交点为A.点C在抛物线E上,以C为圆心, |CO| 为半径作圆,设圆C与准线l交于不同的两点M,N.
(1)若点C的纵坐标为2,求|MN| .
(2)若|AF|2=|AM|·|AN| ,求圆C的半径.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】据市场调查,某种商品一年内每件出厂价在7千元的基础上,按月呈f(x)=Asin(ωx+)+b (A>0,ω>0,| |<)的模型波动(x为月份),已知3月份达到最高价9千元,7月份价格最低为5千元,根据以上条件可确定f(x)的解析式为
A. f(x)=2sin(x-)+7 (1≤x≤12,x∈N+)
B. f(x)=9sin(x-) (1≤x≤12,x∈N+)
C. f(x)=2sinx+7 (1≤x≤12,x∈N+)
D. f(x)=2sin(x+)+7 (1≤x≤2,x∈N+)
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】已知函数f(x)=(2-a)(x-1)-2lnx(a∈R).
(1)若曲线g(x)=f(x)+x上点(1,g(1))处的切线过点(0,2),求函数g(x)的单调减区间;
(2)若函数y=f(x)在区间(0, )内无零点,求实数a的最小值.
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com