精英家教网 > 高中数学 > 题目详情

【题目】当前全世界人民越来越关注环境保护问题,某地某监测站点于20188月起连续n天监测空气质量指数(AQI),数据统计如下表:

空气质量指数(μg/m3

[050]

50100]

100150]

150200]

200250]

空气质量等级

轻度污染

中度污染

重度污染

天数

20

40

m

10

5

1)根据所给统计表和频率分布直方图中的信息求出nm的值,并完成频率分布直方图;

2)由频率分布直方图,求该组数据的平均数与中位数;

3)在空气质量指数分别为[050]和(50100]的监测数据中,用分层抽样的方法抽取6天,从中任意选取2天,求事件A“两天空气质量等级都为良发生的概率。

【答案】1)见解析(2)平均数为95,中位数为3

【解析】

1)由频率分布表求出nm,由此能完成频率分布直方图.
2)由频率分布直方图能求出该组数据的平均数和中位数.

3)由题意知在空气质量指数为[050]和(50100]的监测天数中分别抽取2天和4天.在所抽取的6天中,将空气质量指数为[050]2天记为xy,空气质量指数为(50100]4天记为abcd,从中任取2天,利用列举法能求出事件A“两天空气质量等级都为良”发生的概率.

1..n=100.

20+40+m+10+5=100.m=25

;;;

由此完成频率分布直方图如图.

2.由频率分布直方图得该组数据的平均数为25×0.004×50+75×0.008×50+125×0.005×50+175×0.002×50+225×0.001×50=95

[050]的频率为0.004×50=0.2,(50100]的频率为0.008×50=0.4

∴中位数为

3.由题意知在空气质量指数为[050]和(50100]的监测天数中分别抽取2天和4.

在所抽取的6天中,将空气质量指数为[050]2天记为xy

空气质量指数为(50100]4天记为abcd

则从中任取2天的基本事件为(xy),(xa),(xb),(xc),(xd),(ya),(yb),(yc),(yd),(ab),(ac),(ad),(bc),(bd),(cd),共计15个,

其中事件A“两天空气质量等级为良包含的基本事件有6个,∴.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:

【题目】十三届全国人大二次会议于201935日在京召开.为了了解某校大学生对两会的关注程度,学校媒体在开幕后的第二天,从学生中随机抽取了180人,对是否收看2019年两会开幕会情况进行了问卷调查,统计数据得到列联表如下:

收看

没收看

合计

男生

40

女生

30

60

合计

1)请完成列联表;

2)根据上表说明,能否有99%的把握认为该校大学生收看开幕会与性别有关?(结果精确到0.001

附:,其中.

0.10

0.05

0.025

0.01

0.005

2.706

3.841

5.024

6.635

7.879

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】ABC的内角ABC的对边分别为abc,已知△ABC的面积为

(1)求sinBsinC;

(2)若6cosBcosC=1,a=3,求△ABC的周长.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知函数.

1)讨论的单调性;

2)当存在三个不同的零点时,求实数的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知a0b0a+b=4mR

1)求+的最小值;

2)若|x+m||x2|≤+对任意的实数x恒成立,求m的范围.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】某商场举行优惠促销活动,顾客仅可以从以下两种优惠方案中选择一种,

方案一:每满200元减50元;

方案二:每满200元可抽奖一次.具体规则是依次从装有3个红球、l个白球的甲箱,装有2个红球、2个白球的乙箱,以及装有1个红球、3个白球的丙箱中各随机摸出1个球,所得结果和享受的优惠如下表:(注:所有小球仅颜色有区别)

红球个数

3

2

1

0

实际付款

半价

7折

8折

原价

(1)若两个顾客都选择方案二,各抽奖一次,求至少一个人获得半价优惠的概率;

(2)若某顾客购物金额为320元,用所学概率知识比较哪一种方案更划算?

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】选修4-4坐标系与参数方程选讲

在直角坐标系中,以原点为极点,轴的正半轴为极轴建立极坐标系,已知曲线,过点的直线的参数方程为为参数),直线与曲线分别交于两点.

(1)写出曲线的平面直角坐标方程和直线的普通方程:

(2)若成等比数列,求实数的值.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知函数

(Ⅰ)若函数fx)的最小值为8,求实数a的值;

(Ⅱ)若函数gx)=|fx|+fx)﹣164个零点,求实数a的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知三棱锥如图一)的平面展开图(如图二)中,四边形为边长等于的正方形均为正三角形,在三棱锥中:

(I)证明:平面平面

Ⅱ)若点在棱上运动,当直线与平面所成的角最大时,求二面角的余弦值.

图一

图二

查看答案和解析>>

同步练习册答案