精英家教网 > 高中数学 > 题目详情

【题目】已知函数

(Ⅰ)当时,求函数的极小值;

(Ⅱ)设定义在上的函数在点处的切线方程为,当时,若内恒成立,则称为函数的“转点”.当时,试问函数是否存在“转点”?若存在,求出转点的横坐标;若不存在,请说明理由.

【答案】1)当时,函数取到极大值为,当时,函数取到极小值为-2.

2)函数存在转点,且2转点的横坐标.

【解析】试题分析:(1)先求导,令导数大于0得增区间,令导数小于0得减区间,根据单调性求最值. 2)求导,根据导数的几何意义得点处切线的斜率,根据点斜式得切线方程,从而可得的解析式,因为是函数图像和切线的交点,.将函数求导,用导数求其单调性,讨论的取值范围判断是否恒成立.

试题解析:解:(1)当时,

,当

所以函数单调递增,在单调递减,

所以当时,函数取到极大值为

时,函数取到极小值为-2. 6

2)当时,函数在其图像上一点处的切线方程为

8

时,上单调递减,

所以当时,

时,上单调递减,

所以当时,

所以不存在转点” 11

时,,即上是增函数.

时,时,即点转点”.

故函数存在转点,且2转点的横坐标. 12

练习册系列答案
相关习题

科目:高中数学 来源: 题型:

【题目】已知椭圆的左右焦点与其短轴得一个端点是正三角形的三个顶点,点在椭圆上,直线与椭圆交于两点,与轴, 轴分别相交于点合点,且,点时点关于轴的对称点, 的延长线交椭圆于点,过点分别做轴的垂线,垂足分别为.

(1) 求椭圆的方程;

(2)是否存在直线,使得点平分线段若存在,请求出直线的方程;若不存在,请说明理由。

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知函数.

(1)求的单调区间;

(2)求的极大值与极小值;

(3)写出利用导数方法求函数极值点的步骤.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】拖延症总是表现在各种小事上,但日积月累,特别影响个人发展.某校的一个社会实践调查小组,在对该校学生进行“是否有明显拖延症”的调查中,随机发放了110份问卷.对收回的100份有效问卷进行统计,得到如下列联表:

有明显拖延症

无明显拖延症

合计

35

25

60

30

10

40

合计

65

35

100

(Ⅰ)按女生是否有明显拖延症进行分层,已经从40份女生问卷中抽取了8份问卷,现从这8份问卷中再随机抽取3份,并记其中无明显拖延症的问卷的份数为,试求随机变量的分布列和数学期望;

(Ⅱ)若在犯错误的概率不超过的前提下认为无明显拖延症与性别有关,那么根据临界值表,最精确的的值应为多少?请说明理由.

附:独立性检验统计量,其中

独立性检验临界值表:

0.25

0.15

0.10

0.05

0.025

1.323

2.072

2.706

3.841

5.024

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】某公司试销一种成本单价为500元的新产品,规定试销时销售单价不低于成本单价,又不高于800元.经试销调查,发现销售量y()与销售单价x()之间的关系可近似看作一次函数ykxb(k≠0),函数图象如图所示.

(1)根据图象,求一次函数ykxb(k≠0)的表达式;

(2)设公司获得的毛利润(毛利润=销售总价-成本总价)S元.试问销售单价定为多少时,该公司可获得最大毛利润?最大毛利润是多少?此时的销售量是多少?

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知椭圆的离心率,左顶点为.

(1)求椭圆的方程;

(2)已知为坐标原点, 是椭圆上的两点,连接的直线平行轴于点,证明: 成等比数列.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知是定义在上的奇函数,且.若对任意的 都有.

(1)用函数单调性的定义证明: 在定义域上为增函数;

(2)若,求的取值范围;

(3)若不等式对所有的 都恒成立,求实数的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知函数

(Ⅰ)求函数的单调区间;

(Ⅱ)若函数上是减函数,求实数的取值范围。

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】求与直线3x-4y+7=0平行,且在两坐标轴上截距之和为1的直线l的方程.

查看答案和解析>>

同步练习册答案