精英家教网 > 高中数学 > 题目详情

如图,是矩形边上的点,边的中点,,现将沿边折至位置,且平面平面.
⑴ 求证:平面平面
⑵ 求四棱锥的体积.

(1)详见解析;(2).

解析试题分析:(1) 利用折叠前几何图形的性质,推导EF⊥BE,然后借助面面垂直的性质定理证明EF⊥平面PBE,进而利用面面垂直的判定定理进行证明;(2)首先求出底面BEFC的面积,然后确定高为三角形PBE的高,最后利用体积公式求解.
试题解析:(1) 证明:由题可知, (3分)
(6分)
(2) ,则
.                                  (12分)
考点:1.线面、面面的垂直关系;2.空间几何体体积.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:解答题

已知正方体的棱长为.

(1)求异面直线所成角的大小;
(2)求四棱锥的体积.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

如图是一个直三棱柱被削去一部分后的几何体的直观图与三视图中的侧视图、俯视图.在直观图中,的中点.又已知侧视图是直角梯形,俯视图是等腰直角三角形,有关数据如图所示.

(Ⅰ)求证:EM∥平面ABC;
(Ⅱ)求出该几何体的体积.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

用斜二测画法画出右图中五边形ABCDE的直观图.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

如图,三棱柱ABC—A1B1C1的侧棱AA1⊥底面ABC,∠ACB = 90°,E是棱CC1上中点,F是AB中点,AC = 1,BC = 2,AA1 = 4.

(1)求证:CF∥平面AEB1;(2)求三棱锥C-AB1E的体积.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

(本小题满分12分)如图,三棱柱中,

(Ⅰ)证明:
(Ⅱ)若,求三棱柱的体积。

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

已知四棱锥中,是正方形,E是的中点,

(1)若,求 PC与面AC所成的角
(2) 求证:平面
(3) 求证:平面PBC⊥平面PCD

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

如图,在底面为直角梯形的四棱锥平面

⑴求证:
(2)设点在棱上,,若∥平面,求的值.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

(本小题满分12分)如图,多面体的直观图及三视图如图所示,分别为的中点.

(1)求证:平面
(2)求证:
(3)求多面体的体积。

查看答案和解析>>

同步练习册答案