精英家教网 > 高中数学 > 题目详情
(2012•德阳二模)已知a、b∈R,a2+ab+b2=3,则a2-ab+b2的取值范围是
[1,9]
[1,9]
分析:由基本不等式得:a2+b2≥|2ab|,结合已知条件中的等式,得|2ab|≤3-ab,从而解出-3≤ab≤1,由此代入a2-ab+b2,可得所求的取值范围.
解答:解:∵a2+ab+b2=3,∴a2+b2=3-ab
∵由基本不等式,得a2+b2≥|2ab|,
∴|2ab|≤3-ab,得-3+ab≤2ab≤3-ab
解这个不等式,得-3≤ab≤1
∴-2ab∈[-2,6]
∵a2-ab+b2=(a2+ab+b2)-2ab=3+(-2ab)
∴a2-ab+b2∈[1,9],
当且仅当a=b=1时,a2-ab+b2的最小值为1;当a=-b=
3
时,a2-ab+b2的最大值为9
故答案为:[1,9]
点评:本题以不等式为载体,求变量的取值范围,着重考查了用基本不等式求最值和简单的演绎推理等知识,属于基础题.
练习册系列答案
相关习题

科目:高中数学 来源: 题型:

(2012•德阳二模)已知
a
=(cos
x
2
3
sin
x
2
),
b
=(sin
x
2
,-sin
x
2
),f(x)=
a
b
+
3
2

(1)求f(x)的递增区间;
(2)在△ABC中,f(A)=1,AB=2,BC=3.求△ABC的面积.

查看答案和解析>>

科目:高中数学 来源: 题型:

(2012•德阳二模)现有4名同学去听同时进行的3个课外知识讲座,每名同学可自由选择其中的一个讲座,不同选法的种数是(  )

查看答案和解析>>

科目:高中数学 来源: 题型:

(2012•德阳二模)i为虚数单位,化简复数
i3(1+
3
i)
3
-i
的结果是(  )

查看答案和解析>>

科目:高中数学 来源: 题型:

(2012•德阳二模)设α,β是两个不同的平面,l是一条直线,以下命题中
①若l?β,l⊥α则α⊥β
②若l?β,l∥α则α∥β
③若l⊥α,α∥β则l⊥β
④若l∥α,α∥β则l∥β
正确命题的个数是(  )

查看答案和解析>>

科目:高中数学 来源: 题型:

(2012•德阳二模)已知数列{an}中,a1≠0,前n项和为Sn,Sn=pn+q,则{an}为等比数列是q=-1的(  )

查看答案和解析>>

同步练习册答案