精英家教网 > 高中数学 > 题目详情
15.已知点A(5,4),B(-1,-5),且2$\overrightarrow{AC}$=3$\overrightarrow{CB}$,求点C的坐标.

分析 设出C的坐标,求出$\overrightarrow{AC}$、$\overrightarrow{CB}$的坐标,利用2$\overrightarrow{AC}$=3$\overrightarrow{CB}$,得到坐标相等,由此求得点C的坐标.

解答 解:A(5,4),B(-1,-5),
设C(x,y),则$\overrightarrow{AC}=(x-5,y-4),\overrightarrow{CB}=(-1-x,-5-y)$,
由2$\overrightarrow{AC}$=3$\overrightarrow{CB}$,得(2x-10,2y-8)=(-3-3x,-15-3y),
∴$\left\{\begin{array}{l}{2x-10=-3-3x}\\{2y-8=-15-3y}\end{array}\right.$,解得$\left\{\begin{array}{l}{x=\frac{7}{5}}\\{y=-\frac{7}{5}}\end{array}\right.$.
∴C点的坐标为($\frac{7}{5},-\frac{7}{5}$).

点评 平行问题是一个重要的知识点,在高考题中常常出现,常与向量的模、向量的坐标表示等联系在一起,要特别注意垂直与平行的区别.若$\overrightarrow{a}$=(a1,a2),$\overrightarrow{b}$=(b1,b2),则$\overrightarrow{a}$⊥$\overrightarrow{b}$?a1a2+b1b2=0,$\overrightarrow{a}$∥$\overrightarrow{b}$?a1b2-a2b1=0,此题是基础题.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:解答题

5.已知向量$\overrightarrow{a}$=(1,1),$\overrightarrow{b}$=(0,-2).
(1)当k$\overrightarrow{a}$-$\overrightarrow{b}$与$\overrightarrow{a}$+$\overrightarrow{b}$的夹角为120°时,求k的值;
(2)问:是否存在实数k使得k$\overrightarrow{a}$-$\overrightarrow{b}$与$\overrightarrow{a}$+$\overrightarrow{b}$垂直?请给出理由.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

6.己知线段AB两端点的坐标分别为A(-1,2),B(4,3),若直线1:mx+y-2m=0与线段AB有交点,求实数m的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

3.已知圆C的圆心在坐标原点O,直线1的方程为x-y-2$\sqrt{2}$=0.
(1)若圆C与直线1相切.求圆C的标准方程;
(2)若圆C上恰有两个点到直线1的距离是1,求圆C的半径的取值范囤.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

10.已知点P(-2,3),Q(3,0),M(1,a),若||PM|-|QM||最大,则实数a=-6.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

20.已知抛物线C:y2=2px(p>0)的准线为x=-2,过点(0,-2)的直线l与抛物线C交于M,N两点,且线段MN的中点的横坐标为2,则直线l的斜率为(  )
A.2或-1B.-1C.2D.3

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

7.某工厂生产一批产品,固定成本为12000元,每件产品的可变成本为60元,销售价为每件180元.
(1)试建立总成本与产量之间的函数关系;
(2)试建立销售收人与产量之间的函数关系;
(3)试建立利润收人与产量之间的函数关系,并求产量至少为多少时才会保本.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

4.已知函数f(x)=x3+ax2+3x+b(a,b∈R),若f(x)的图象上任意不同两点连线的斜率均大于2,求实数a的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

19.已知函数f(x)=sin2x+2$\sqrt{3}sinxcosx+3{cos^2}$x
(1)求函数f(x)的最小正周期及单调递增区间
(2)已知f(α)=2+$\sqrt{3}$,且$α∈[0,\frac{π}{3}]$,求α的值.

查看答案和解析>>

同步练习册答案