【题目】设函数f(x)=lnx﹣x+1.
(1)讨论f(x)的单调性;
(2)证明当x∈(1,+∞)时,1< <x;
(3)设c>1,证明当x∈(0,1)时,1+(c﹣1)x>cx .
【答案】
(1)
解:函数f(x)=lnx﹣x+1的导数为f′(x)= ﹣1,
由f′(x)>0,可得0<x<1;由f′(x)<0,可得x>1.
即有f(x)的增区间为(0,1);减区间为(1,+∞);
(2)
证明:当x∈(1,+∞)时,1< <x,即为lnx<x﹣1<xlnx.
由(1)可得f(x)=lnx﹣x+1在(1,+∞)递减,
可得f(x)<f(1)=0,即有lnx<x﹣1;
设F(x)=xlnx﹣x+1,x>1,F′(x)=1+lnx﹣1=lnx,
当x>1时,F′(x)>0,可得F(x)递增,即有F(x)>F(1)=0,
即有xlnx>x﹣1,则原不等式成立;
(3)
证明:设G(x)=1+(c﹣1)x﹣cx,G′(x)=c﹣1﹣cxlnc,
可令G′(x)=0,可得cx= ,
由c>1,x∈(0,1),可得1<cx<c,即1< <c,
由(1)可得cx= 恰有一解,设为x=x0是G(x)的最大值点,且0<x0<1,
由G(0)=G(1)=0,且G(x)在(0,x0)递增,在(x0,1)递减,
可得G(x0)=1+(c﹣1)x0﹣cx0>0成立,
则c>1,当x∈(0,1)时,1+(c﹣1)x>cx.
【解析】(1)求出导数,由导数大于0,可得增区间;导数小于0,可得减区间,注意函数的定义域;(2)由题意可得即证lnx<x﹣1<xlnx.运用(1)的单调性可得lnx<x﹣1,设F(x)=xlnx﹣x+1,x>1,求出单调性,即可得到x﹣1<xlnx成立;(3)设G(x)=1+(c﹣1)x﹣cx , 求出导数,可令G′(x)=0,由c>1,x∈(0,1),可得1< <c,由(1)可得cx= 恰有一解,设为x=x0是G(x)的最小值点,运用最值,结合不等式的性质,即可得证.;本题考查导数的运用:求单调区间和极值、最值,考查不等式的证明,注意运用构造函数法,求出导数判断单调性,考查推理和运算能力,属于中档题.
【考点精析】认真审题,首先需要了解利用导数研究函数的单调性(一般的,函数的单调性与其导数的正负有如下关系: 在某个区间内,(1)如果,那么函数在这个区间单调递增;(2)如果,那么函数在这个区间单调递减).
科目:高中数学 来源: 题型:
【题目】如图,在四棱锥中,侧面是正三角形,且与底面垂直,底面是边长为2的菱形, 是的中点,过三点的平面交于, 为的中点,求证:
(1)平面;
(2)平面;
(3)平面平面.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】已知函数f(x)=|x+a|(a>-2)的图象过点(2,1).
(1)求实数a的值;
(2)设,在如图所示的平面直角坐标系中作出函数y=g(x)的简图,并写出(不需要证明)函数g(x)的定义域、奇偶性、单调区间、值域.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】已知函数f(x)=ax2+2ax+3-b(a≠0,b>0)在[0,3]上有最小值2,最大值17,函数g(x)=.
(l)求函数g(x)的解析式;
(2)证明:对任意实数m,都有g(m2+2)≥g(2|m|+l);
(3)若方程g(|log2x-1|)+3k(-1)=0有四个不同的实数解,求实数k的取值范围.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】已知函数y=f(x)的周期为2,当x∈[0,2时,f(x)=2|x-1|-1,如果g(x)=f(x)-log3|x-2|,则函数y=g(x)的所有零点之和为( )
A. 6 B. 8 C. 10 D. 12
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】已知函数f(x)是定义在R上的奇函数,且当x≤0时,f(x)=x2+2x.
(1)现已画出函数f(x)在y轴左侧的图象,如图所示,请补全函数f(x)的图象;
(2)求出函数f(x)(x>0)的解析式;
(3)若方程f(x)=a恰有3个不同的解,求a的取值范围.
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com