【题目】近期“共享单车”在全国多个城市持续升温,某移动互联网机构通过对使用者的调查得出,现在市场上常见的八个品牌的“共享单车”的满意度指数如茎叶图所示:
(Ⅰ)求出这组数据的平均数和中位数;
(Ⅱ)某用户从满意度指数超过80的品牌中随机选择两个品牌使用,求所选两个品牌的满意度指数均超过85的概率.
【答案】(Ⅰ)平均数;中位数为83 (Ⅱ)概率为
【解析】【试题分析】(1)先依据题设条件中茎叶图得到中位数,再运用平均数的计算公式求出
;(2)先搞清楚满意度指数超过80的品牌有5个,进而求出任选两个有种,再求出所选两个品牌的满意度指数均超过85的有种,运用古典概型的计算公式从而求出满足题设条件的概率:
解:(Ⅰ)平均数;
8个数按从小到大的顺序排列为:73,77,79,82,84,86,90,93.这组数据最中间的两个数的平均数为,故这组数据的中位数为83.
(Ⅱ)满意度指数超过80的品牌有5个,从中任选两个有种,其中所选两个品牌的满意度指数均超过85的有种,故所选两个品牌的满意度指数均超过85的概率为.
科目:高中数学 来源: 题型:
【题目】在等差数列{an}中,a2+a7=﹣23,a3+a8=﹣29.
(1)求数列{an}的通项公式;
(2)设数列{an+bn}是首项为1,公比为c的等比数列,求{bn}的前n项和Sn .
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】若二次函数f(x)=ax2+bx+c(a,b,c∈R)满足f(x+1)﹣f(x)=4x+1,且f(0)=3.
(1)求f(x)的解析式;
(2)若在区间[﹣1,1]上,不等式f(x)>6x+m恒成立,求实数m的取值范围.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】对于x∈R,[x]表示不超过x的最整数,如[1.1]=1,[﹣2.1]=﹣3.定义R上的函数f(x)=[2x]+[4x]+[8x],若A={y|y=f(x),0≤x≤ },则A中所有元素的和为( )
A.15
B.19
C.20
D.55
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】已知a∈R,函数f(x)=x|x﹣a|.
(1)当a=2时,将函数f(x)写成分段函数的形式,并作出函数的简图,写出函数y=f(x)的单调递增区间;
(2)当a>2时,求函数y=f(x)在区间[1,2]上的最小值.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】在锐角△ABC中,内角A,B,C的对边分别为a,b,c,且2asinB= b.
(1)求角A的大小;
(2)若a=4,b+c=8,求△ABC的面积.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】已知函数f(x)+2= ,当x∈(0,1]时,f(x)=x2 , 若在区间(﹣1,1]内,g(x)=f(x)﹣t(x+2)有两个不同的零点,则实数t的取值范围是( )
A.(0, ]
B.(0, ]
C.[﹣ , ]
D.[﹣ , ]
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com