精英家教网 > 高中数学 > 题目详情

已知函数数学公式,且数学公式数学公式,又知函数
f(x)的周期为π.
(1)求f(x)的解析式;
(2)若将f(x)的图象向右平移数学公式个单位得到g(x)的图象,求g(x)的单调递增区间.

解:(1)∵
=0…(1分)
=cosφ-sinφ=…(3分)
∴φ+

又∵|φ|<
∴φ=.…(5分)
∵函数f(x)的周期T=π,即=π,ω=2.
∴解析式为…(6分)
(2)由题意知,函数f(x)的图象向右平移个单位得到g(x)的图象
…(8分)
∴g(x)的单调递增区间为2kπ-
解得kπ-,…(10分)
∴g(x)的单调递增区间为…(12分)
分析:(1)根据所给的两个向量垂直,得出它们的数量积为0,求出φ值,再根据周期公式求出ω,最后写出函数的解析式.
(2)根据函数的图象的平移的原则,写出新的函数的解析式,根据正弦曲线的单调区间写出函数的单调递增区间.
点评:本题主要考查了数量积判断两个平面向量的垂直关系、正弦函数的单调性和函数的图象的平移,本题解题的关键是正确写出函数的解析式,这是后面解题的依据,本题是一个中档题目.
练习册系列答案
相关习题

科目:高中数学 来源: 题型:

例4、已知函数y=f(x)是定义在R上的周期函数,周期T=5,函数y=f(x)(-1≤x≤1)是奇函数.又知y=f(x)在[0,1]上是一次函数,在[1,4]上是二次函数,且在x=2时函数取得最小值-5.
①证明:f(1)+f(4)=0;②求y=f(x),x∈[1,4]的解析式;③求y=f(x)在[4,9]上的解析式.

查看答案和解析>>

科目:高中数学 来源: 题型:

已知函数f(x)对任意实数x,y恒有f(x+y)=f(x)+f(y)且当x>0,f(x)<0.又f(1)=-2.
(1)判断函数f(x)的奇偶性;
(2)求函数f(x)在区间[-3,3]上的最大值;
(3)解关于x的不等式f(ax2)-2f(x)<f(ax)+4.

查看答案和解析>>

科目:高中数学 来源: 题型:

已知函数y=f(x)是定义在R上的周期函数,周期为5,函数y=f(x)(-1≤x≤1)是奇函数,又知y=f(x)在[0,1]上是一次函数,在[1,4]上是二次函数,且在x=2时函数取得最小值-5,
(1)求f(1)+f(4)的值;
(2)求y=f(x),x∈[1,4]上的解析式;
(3)求y=f(x)在[4,9]上的解析式,并求函数y=f(x)的最大值与最小值.

查看答案和解析>>

科目:高中数学 来源:2008-2009学年四川省成都七中高三数学专项训练:从集合到函数周期(解析版) 题型:解答题

例4、已知函数y=f(x)是定义在R上的周期函数,周期T=5,函数y=f(x)(-1≤x≤1)是奇函数.又知y=f(x)在[0,1]上是一次函数,在[1,4]上是二次函数,且在x=2时函数取得最小值-5.
①证明:f(1)+f(4)=0;②求y=f(x),x∈[1,4]的解析式;③求y=f(x)在[4,9]上的解析式.

查看答案和解析>>

科目:高中数学 来源:高考数学一轮复习必备(第09课时):第二章 函数-函数的解析式及定义域(解析版) 题型:解答题

例4、已知函数y=f(x)是定义在R上的周期函数,周期T=5,函数y=f(x)(-1≤x≤1)是奇函数.又知y=f(x)在[0,1]上是一次函数,在[1,4]上是二次函数,且在x=2时函数取得最小值-5.
①证明:f(1)+f(4)=0;②求y=f(x),x∈[1,4]的解析式;③求y=f(x)在[4,9]上的解析式.

查看答案和解析>>

同步练习册答案