精英家教网 > 高中数学 > 题目详情

【题目】若函数的图象和直线无交点给出下列结论

①方程一定没有实数根

②若则必存在实数使

③若则不等式对一切实数都成立

④函数的图象与直线也一定没有交点

其中正确的结论个数有( )

A. 1个 B. 2个 C. 3个 D. 4个

【答案】C

【解析】因为函数f(x)的图象与直线y=x没有交点,所以f(x)>x(a>0)或f(x)<x(a<0)恒成立.
因为f[f(x)]>f(x)>xf[f(x)]<f(x)<x恒成立,所以f[f(x)]=x没有实数根;
故①正确;
a<0,则不等式f[f(x)]<x对一切实数x都成立,所以不存在x0,使f[f(x0)]>x0
故②错误;
a+b+c=0,则f(1)=0<1,可得a<0,因此不等式f[f(x)]<x对一切实数x都成立;
故③正确;
易见函数g(x)=f(-x),与f(x)的图象关于y轴对称,所以g(x)和直线y=-x也一定没有交点.
故④正确;
故选C.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:

【题目】“中国式过马路”存在很大的交通安全隐患.某调查机构为了解路人对“中国式过马路”的态度是否与性别有关,从马路旁随机抽取30名路人进行了问卷调查,得到了如下列联表:

男性

女性

合计

反感

10

不反感

8

合计

30

已知在这30人中随机抽取1人抽到反感“中国式过马路”的路人的概率是
(Ⅰ)请将上面的列联表补充完整(在答题卡上直接填写结果,不需要写求解过程),并据此资料分析反感“中国式过马路”与性别是否有关?
(Ⅱ)若从这30人中的女性路人中随机抽取2人参加一活动,记反感“中国式过马路”的人数为X,求X的分布列和数学期望.
提示:可参考试卷第一页的公式.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知函数f(x)= ,若函数g(x)=f(x)﹣mx﹣m在(﹣1,1]内有且仅有两个不同的零点,则实数m的取值范围为

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知定义在R的函数是偶函数,且满足上的解析式为,过点作斜率为k的直线l,若直线l与函数的图象至少有4个公共点,则实数k的取值范围是

A. B. C. D.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】如图所示,四棱锥 的底面为直角梯形, 底面 的中点.

(Ⅰ)求证:平面 平面
(Ⅱ)求直线 与平面 所成的角的正弦值.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】如图(甲),在直角梯形 分别为的中点现将沿折起使平面平面如图(乙).

(1)求证:平面平面

(2)若求二面角的余弦值

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】如图,半圆AOB是某市休闲广场的平面示意图,半径OA的长为10,管理部门在A,B两处各安装好一个光源,其相应的光强度分别为4和9,根据光学原理,地面上某处照度y与光强度I成正比,与光源距离x的平方成反比,即y= (k为比例系数),经测量,在弧AB的中心C处的照度为130.(C处的照度为A,B两处光源的照度之和)
(1)求比例系数k的值;
(2)现在管理部门计划在半圆弧AB上,照度最小处增设一个光源P,试问新增光源P安装在什么位置?

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】函数y=loga(x+3)﹣1(a>0且a≠1)的图象恒过定点A,若点A在mx+ny+2=0上,其中mn>0,则 的最小值为

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知函数f(x)=lnx.
(1)设h(x)为偶函数,当x<0时,h(x)=f(﹣x)+2x,求曲线y=h(x)在点(1,﹣2)处的切线方程;
(2)设g(x)=f(x)﹣mx,求函数g(x)的极值;
(3)若存在x0>1,当x∈(1,x0)时,恒有f(x)> 成立,求实数k的取值范围.

查看答案和解析>>

同步练习册答案