精英家教网 > 高中数学 > 题目详情

【题目】已知抛物线C:y2=2px(p>0)的焦点为F,点M(2,m)为其上一点,且|MF|=4.
(1)求p与m的值;
(2)如图,过点F作直线l交抛物线于A、B两点,求直线OA、OB的斜率之积.

【答案】
(1)解:抛物线C:y2=2px(p>0)的焦点为 ,准线为

由抛物线定义知:点M(2,m)到F的距离等于M到准线的距离,

∴p=4,抛物线C的方程为y2=8x

∵点M(2,m)在抛物线C上,

∴m2=16,即m=±4

∴p=4,m=±4


(2)证明:由(1)知:抛物线C的方程为y2=8x,焦点为F(2,0)

若直线l的斜率不存在,

则其方程为:x=2,代入y2=8x,

易得:A(2,4),B(2,﹣4),

从而

若直线l的斜率存在,设为k(k≠0),则其方程可表示为:y=k(x﹣2),

,消去x,得:

即ky2﹣8y﹣16k=0(k≠0),△=64+64k2>0

设A(x1,y1),B(x2,y2),

从而

综上所述:直线OA、OB的斜率之积为﹣4


【解析】(1)求得抛物线的焦点和准线方程,由抛物线的定义,可得p的方程,求得p和抛物线的方程,以及m的值;(2)求出抛物线的焦点,讨论直线l的斜率不存在,求得交点A,B,可得斜率之积;直线l的斜率存在,设为k(k≠0),则其方程可表示为:y=k(x﹣2),联立抛物线的方程,消去x,设A(x1,y1),B(x2,y2),运用韦达定理和直线的斜率公式,计算即可得到所求之积.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:

【题目】已知函数f(x)=e2x+1﹣2mx﹣ m,其中m∈R,e为自然对数底数.
(1)讨论函数f(x)的单调性;
(2)若不等式f(x)≥n对任意x∈R都成立,求mn的最大值.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知函数 ,且 .
(1)试求 的值;
(2)用定义证明函数 上单调递增;
(3)设关于 的方程 的两根为 ,试问是否存在实数 ,使得不等式 对任意的 恒成立?若存在,求出 的取值范围;若不存在说明理由.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知f(x)=xlnx,g(x)=x3+ax2﹣x+2.
(1)求函数f(x)的单调区间;
(2)对任意x∈(0,+∞),2f(x)≤g′(x)+2恒成立,求实数a的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知函数
(1)判断函数 的单调性并给出证明;
(2)若存在实数 使函数 是奇函数,求
(3)对于(2)中的 ,若 ,当 时恒成立,求 的最大值.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知直线y=-x+5的倾斜角是直线l的倾斜角的大小的5倍,分别求满足下列条件的直线l的方程.

(1)过点P(3,-4);

(2)在x轴上截距为-2;

(3)在y轴上截距为3.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】某公司有AB两个景点,位于一条小路(直道)的同侧,分别距小路 km2 km,且AB景点间相距2 km,今欲在该小路上设一观景点,使两景点在同时进入视线时有最佳观赏和拍摄效果,则观景点应设于____.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知椭圆C1 , 抛物线C2的焦点均在x轴上,C1的中心和C2的顶点均为原点O,从每条曲线上各取两个点,其坐标分别是(3,一2 ),(一2,0),(4,一4),( ). (Ⅰ)求C1 , C2的标准方程;
(Ⅱ)是否存在直线L满足条件:①过C2的焦点F;②与C1交与不同的两点M,N且满足 ?若存在,求出直线方程;若不存在,说明理由.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】某高中为了解高中学生的性别和喜欢打篮球是否有关,对50名高中学生进行了问卷调查,得到如下列联表:

喜欢打篮球

不喜欢打篮球

合计

男生

5

女生

10

合计

已知在这50人中随机抽取1人,抽到喜欢打篮球的学生的概率为
(Ⅰ)请将上述列联表补充完整;
(Ⅱ)判断是否有99.5%的把握认为喜欢打篮球与性别有关?
附:K2=

p(K2≥k0

0.10

0.05

0.025

0.010

0.005

0.001

k0

2.706

3.841

5.024

6.635

7.879

10.828

查看答案和解析>>

同步练习册答案