【题目】已知抛物线C:y2=2px(p>0)的焦点为F,点M(2,m)为其上一点,且|MF|=4.
(1)求p与m的值;
(2)如图,过点F作直线l交抛物线于A、B两点,求直线OA、OB的斜率之积.
【答案】
(1)解:抛物线C:y2=2px(p>0)的焦点为 ,准线为 .
由抛物线定义知:点M(2,m)到F的距离等于M到准线的距离,
故 ,
∴p=4,抛物线C的方程为y2=8x
∵点M(2,m)在抛物线C上,
∴m2=16,即m=±4
∴p=4,m=±4
(2)证明:由(1)知:抛物线C的方程为y2=8x,焦点为F(2,0)
若直线l的斜率不存在,
则其方程为:x=2,代入y2=8x,
易得:A(2,4),B(2,﹣4),
从而 ;
若直线l的斜率存在,设为k(k≠0),则其方程可表示为:y=k(x﹣2),
由 ,消去x,得: ,
即ky2﹣8y﹣16k=0(k≠0),△=64+64k2>0
设A(x1,y1),B(x2,y2),
则 ,
∴ ,
从而 .
综上所述:直线OA、OB的斜率之积为﹣4
【解析】(1)求得抛物线的焦点和准线方程,由抛物线的定义,可得p的方程,求得p和抛物线的方程,以及m的值;(2)求出抛物线的焦点,讨论直线l的斜率不存在,求得交点A,B,可得斜率之积;直线l的斜率存在,设为k(k≠0),则其方程可表示为:y=k(x﹣2),联立抛物线的方程,消去x,设A(x1,y1),B(x2,y2),运用韦达定理和直线的斜率公式,计算即可得到所求之积.
科目:高中数学 来源: 题型:
【题目】已知函数f(x)=e2x+1﹣2mx﹣ m,其中m∈R,e为自然对数底数.
(1)讨论函数f(x)的单调性;
(2)若不等式f(x)≥n对任意x∈R都成立,求mn的最大值.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】已知函数 ,且 .
(1)试求 的值;
(2)用定义证明函数 在 上单调递增;
(3)设关于 的方程 的两根为 ,试问是否存在实数 ,使得不等式 对任意的 及 恒成立?若存在,求出 的取值范围;若不存在说明理由.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】已知f(x)=xlnx,g(x)=x3+ax2﹣x+2.
(1)求函数f(x)的单调区间;
(2)对任意x∈(0,+∞),2f(x)≤g′(x)+2恒成立,求实数a的取值范围.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】已知函数
(1)判断函数 的单调性并给出证明;
(2)若存在实数 使函数 是奇函数,求 ;
(3)对于(2)中的 ,若 ,当 时恒成立,求 的最大值.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】已知直线y=-x+5的倾斜角是直线l的倾斜角的大小的5倍,分别求满足下列条件的直线l的方程.
(1)过点P(3,-4);
(2)在x轴上截距为-2;
(3)在y轴上截距为3.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】某公司有A、B两个景点,位于一条小路(直道)的同侧,分别距小路 km和2 km,且A、B景点间相距2 km,今欲在该小路上设一观景点,使两景点在同时进入视线时有最佳观赏和拍摄效果,则观景点应设于____.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】已知椭圆C1 , 抛物线C2的焦点均在x轴上,C1的中心和C2的顶点均为原点O,从每条曲线上各取两个点,其坐标分别是(3,一2 ),(一2,0),(4,一4),( ). (Ⅰ)求C1 , C2的标准方程;
(Ⅱ)是否存在直线L满足条件:①过C2的焦点F;②与C1交与不同的两点M,N且满足 ?若存在,求出直线方程;若不存在,说明理由.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】某高中为了解高中学生的性别和喜欢打篮球是否有关,对50名高中学生进行了问卷调查,得到如下列联表:
喜欢打篮球 | 不喜欢打篮球 | 合计 | |
男生 | 5 | ||
女生 | 10 | ||
合计 |
已知在这50人中随机抽取1人,抽到喜欢打篮球的学生的概率为
(Ⅰ)请将上述列联表补充完整;
(Ⅱ)判断是否有99.5%的把握认为喜欢打篮球与性别有关?
附:K2=
p(K2≥k0) | 0.10 | 0.05 | 0.025 | 0.010 | 0.005 | 0.001 |
k0 | 2.706 | 3.841 | 5.024 | 6.635 | 7.879 | 10.828 |
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com