精英家教网 > 高中数学 > 题目详情
(2011•奉贤区二模)(理)已知F1(-
2
,0)
F2(
2
,0)
,点T(x,y)满足|
TF1
|+|
TF2
|=4
,O为直角坐标原点,
(1)求点T的轨迹方程Γ;
(2)任意一条不过原点的直线L与轨迹方程Γ相交于点P,Q两点,三条直线OP,OQ,PQ的斜率分别是kOP、kOQ、kPQ
kPQ2=kOP•kOQ,求kPQ
分析:(1)由于点T(x,y)满足|
TF1
|+|
TF2
|=4
>|
F1F2
|
,故轨迹是以F1,F2为焦点的椭圆,从而可求轨迹方程;
(2)将执行方程与椭圆方程联立,利用斜率公式,结合韦达定理即可证明.
解答:解:(1)由题意,点T的轨迹是以F1,F2为焦点的椭圆,且a=2,c=
2

从而所求轨迹方程为
x2
4
+
y2
2
=1
(6分)
(2)设直线L的方程:y=kx+t(t≠0)(7分)
y=kx+t
x2
4
+
y2
2
=1
消去y得:(1+2k2)x2+4ktx+2t2-4=0,(9分)x1x2=
2t2-4
1+2k2
(10分)
消去x得:(1+2k2)y2-2yt+t2-4k2=0,y1y2=
t2-4k2
1+2k2
(12分)
kOPkOQ=
y1
x1
y2
x2
=
y1y2
x1x2
=
t2-4k2
2t2-4
=k2
,(14分)∴k2=
1
2
k=±
2
2
(16分)
点评:本题的考点是椭圆的标准方程,主要考查椭圆的定义,考查直线与曲线的位置关系,考查斜率公式,由较强的综合性.
练习册系列答案
相关习题

科目:高中数学 来源: 题型:

(2011•奉贤区二模)(文) 如图都是由边长为1的正方体叠成的图形.例如第(1)个图形的表面积为6个平方单位,第(2)个图形的表面积为18个平方单位,第(3)个图形的表面积是36个平方单位.依此规律,则第n个图形的表面积是
3n(n+1)
3n(n+1)
个平方单位.

查看答案和解析>>

科目:高中数学 来源: 题型:

(2011•奉贤区二模)已知|
a
|=|
b
|=2,
a
b
的夹角为
π
3
,则
b
a
上的投影为
1
1

查看答案和解析>>

科目:高中数学 来源: 题型:

(2011•奉贤区二模)(文)设x,y满足约束条件
x≥0
y≥0
x
3a
+
y
4a
≤1
z=
y+1
x+1
的最小值为
1
4
,则a的值
1
1

查看答案和解析>>

科目:高中数学 来源: 题型:

(2011•奉贤区二模)用2π平方米的材料制成一个有盖的圆锥形容器,如果在制作过程中材料无损耗,且材料的厚度忽略不计,底面半径长为x,圆锥母线的长为y
(1)建立y与x的函数关系式,并写出x的取值范围;
(2)圆锥的母线与底面所成的角大小为
π3
,求所制作的圆锥形容器容积多少立方米(精确到0.01m3

查看答案和解析>>

科目:高中数学 来源: 题型:

(2011•奉贤区二模)若复数3+i是实系数一元二次方程x2-6x+b=0的一个根,则b=
10
10

查看答案和解析>>

同步练习册答案