精英家教网 > 高中数学 > 题目详情

已知函数数学公式的定义域为(0,1](a为实数).
(1)当a=-1时,求函数y=f(x)的值域;
(2)当a>0时,判断函数y=f(x)的单调性并给予证明;
(3)若f(x)>5在定义域上恒成立,求实数a的取值范围.

解:(1)显然函数y=f(x)的值域为
(2)当a>0时,y=f(x)在(0,1]上为单调递增函数.证明如下:任取x1,x2∈(0,1],且x1<x2
则f(x1)-f(x2)=,所以y=f(x)在(0,1]上为单调递增函数.
(3)当x∈(0,1]时,f(x)>5在定义域上恒成立,即a<2x2-5x在x∈(0,1]时恒成立.
设g(x)=2x2-5x,当x∈(0,1]时,g(x)∈[-3,0),只要a<-3即可,即a的取值范围是(-∞,-3).
分析:(1)将a的值代入函数解析式,利用基本不等式求出函数的值域.
(2)当a>0时,y=f(x)在(0,1]上为单调递增函数,再利用定义证明;
(3)当x∈(0,1]时,f(x)>5在定义域上恒成立,等价于a<2x2-5x在x∈(0,1]时恒成立,求函数.g(x)=2x2-5x的最小值即可.
点评:本题主要考查函数的值域,考查函数的单调性及恒成立问题,有一定的综合性.
练习册系列答案
相关习题

科目:高中数学 来源: 题型:

已知函数的定义域为(0,+∞),且单调递增,满足f(4)=1,f(xy)=f(x)+f(y).
(Ⅰ)证明:f(1)=0;
(Ⅱ)若f(x)+f(x-3)≤1,求x的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:

已知函数的定义域为R,对任意的x1,x2都满足f(x1+x2)=f(x1)+f(x2),当x>0时,f(x)>0.
(I)试判断并证明f(x)的奇偶性;
(II)试判断并证明f(x)的单调性;
(III)若f(cos2θ-3)+f(4m-2mcosθ)>0对所有的θ∈[0,
π2
]
均成立,求实数m 的取值范围.

查看答案和解析>>

科目:高中数学 来源:2013-2014学年浙江省杭州市七校高三上学期期中联考理科数学试卷(解析版) 题型:解答题

已知函数的定义域为

(1)求

(2)若,且的真子集,求实数的取值范围.

 

查看答案和解析>>

科目:高中数学 来源:2014届辽宁朝阳高二下学期期中考试理科数学试卷(解析版) 题型:选择题

已知函数的定义域为,部分对应值如下表。的导函数的图像如图所示。

0

下列关于函数的命题:

①函数上是减函数;②如果当时,最大值是,那么的最大值为;③函数个零点,则;④已知的一个单调递减区间,则的最大值为

其中真命题的个数是(           )

A、4个    B、3个  C、2个  D、1个

 

查看答案和解析>>

科目:高中数学 来源:2010-2011学年海南省海口市高三高考调研考试理科数学 题型:选择题

已知函数的定义域为,且的导函数,函数的图象如图所示.若正数,满足,则的取值范围是

    A.    B.  C.    D.

 

查看答案和解析>>

同步练习册答案