精英家教网 > 高中数学 > 题目详情

(本题满分13分)

已知三次函数的导函数为实数。

 (1)若曲线在点()处切线的斜率为12,求的值;

 (2)若在区间[-1,1]上的最小值、最大值分别为-2、1,且,求函数的解析式。

 

【答案】

 

(1)3

(2)=

【解析】解:(1)由导数的几何意义=12 

         ∴   ∴   ………………3分

(2)∵   ……5分

         由  得       ∵ [-1,1],     

 ∴ 当[-1,0)时,递增;

(0,1]时,递减。…8分

在区间[-1,1]上的最大值为,∴ =1 …………10分

     

 ∴  

是函数的最小值, 

 

 ∴   

 ∴ =  ……13分

 

练习册系列答案
相关习题

科目:高中数学 来源:2015届天津市高一第一次月考数学试卷(解析版) 题型:解答题

(本题满分13分)

已知集合.

(1) 求;   (2) 若,求的取值范围.

 

查看答案和解析>>

科目:高中数学 来源:2012届浙江省宁波万里国际学校高三上期中理科数学试卷(解析版) 题型:解答题

(本题满分13分)的三个内角依次成等差数列.

   (Ⅰ)若,试判断的形状;

   (Ⅱ)若为钝角三角形,且,求

的取值范围.

 

查看答案和解析>>

科目:高中数学 来源:2011-2012学年北京市朝阳区高三上学期期末考试理科数学 题型:解答题

(本题满分13分)

在锐角中,分别为内角所对的边,且满足

(Ⅰ)求角的大小;

(Ⅱ)若,且,求的值.

 

查看答案和解析>>

科目:高中数学 来源:重庆市09-10学年高二下学期5月月考(数学文) 题型:解答题

(本题满分13分)展开式中,求:

(1)第6项;   (2) 第3项的系数;   (3)常数项。

 

查看答案和解析>>

科目:高中数学 来源:2010-2011学年福建省龙岩市高三上学期期末考试数学理卷(一级学校) 题型:解答题

(本题满分13分)

如图,在五面体ABCDEF中,FA平面ABCDAD//BC//FEABADAFABBCFEAD.

(Ⅰ)求异面直线BFDE所成角的余弦值;

(Ⅱ)在线段CE上是否存在点M,使得直线AM与平面CDE所成角的正弦值为?若存在,试确定点M的位置;若不存在,请说明理由.

 

 

 

 

 

 

查看答案和解析>>

同步练习册答案