【题目】如图,在半径为的半圆形铁皮上截取一块矩形材料ABCD(点A、B在直径上,点C、D在半圆周上),并将其卷成一个以AD为母线的圆柱体罐子的侧面(不计剪裁和拼接损耗),
(1)若要求圆柱体罐子的侧面积最大,应如何截取?
(2)若要求圆柱体罐子的体积最大,应如何截取?
【答案】(1)当截取的矩形铁皮的一边为为时,圆柱体罐子的侧面积最大.
(2)当截取的矩形铁皮的一边为为时,圆柱体罐子的体积最大.
【解析】解:(1)如图,设圆心为O,连结,设 ,
法一 易得, ,故所求矩形的面积为
()
(当且仅当, ()时等号成立) 此时 ;
法二 设, ; 则, ,
所以矩形的面积为,
当,即时, ()此时 ;
(2)设圆柱的底面半径为,体积为,由得, ,
所以,其中,
由得,此时, 在上单调递增,在上单调递减, 故当 时,体积最大为 ,
答:(1)当截取的矩形铁皮的一边为 为时,圆柱体罐子的侧面积最大.
(2)当截取的矩形铁皮的一边为 为时,圆柱体罐子的体积最大.
科目:高中数学 来源: 题型:
【题目】数列{bn}(bn>0)的首项为1,且前n项和Sn满足Sn﹣Sn﹣1= + (n≥2).
(1)求{bn}的通项公式;
(2)若数列{ }前n项和为Tn , 问Tn> 的最小正整数n是多少?
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】△ABC的内角A,B,C所对的边分别为a,b,c.向量 =(a, b)与 =(cosA,sinB)平行.
(Ⅰ)求A;
(Ⅱ)若a= ,b=2,求△ABC的面积.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】如图,一个圆心角为直角的扇形花草房,半径为1,点是花草房弧上一个动点,不含端点,现打算在扇形内种花, ,垂足为, 将扇形分成左右两部分,在左侧部分三角形为观赏区,在右侧部分种草,已知种花的单位面积的造价为,种草的单位面积的造价为2,其中为正常数,设,种花的造价与种草的造价的和称为总造价,不计观赏区的造价,总造价为
求关于的函数关系式;
求当为何值时,总造价最小,并求出最小值。
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】对某校高一年级学生参加社区服务次数进行统计,随机抽取名学生作为样本,得到这名学生参加社区服务的次数.根据此数据作出了频数与频率的统计表和频率分布直方图如下:
分组 | 频数 | 频率 |
10 | 0.25 | |
25 | ||
2 | 0.05 | |
合计 | 1 |
(1)求出表中及图中的值;
(2)试估计他们参加社区服务的平均次数;
(3)在所取样本中,从参加社区服务的次数不少于20次的学生中任选2人,求至少1人参加社区服务次数在区间内的概率.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】已知椭圆C的中心在坐标原点,焦点在x轴上,椭圆C上的点到焦点距离的最大值为3,离心率 .
(Ⅰ)求椭圆C的标准方程;
(Ⅱ)若经过左焦点F1且倾斜角为 的直线l与椭圆交于A、B两点,求|AB|的值.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】过△ABC所在平面α外一点P,作PO⊥α,垂足为O,连接PA,PB,PC,若点O是△ABC的内心,则( )
A.PA=PB=PC
B.点P到AB,BC,AC的距离相等
C.PA⊥PB,PB⊥PC,PC⊥PA
D.PA,PB,PC与平面α所成的角相等
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】一汽车厂生产三类轿车,每类轿车均有舒适型和标准型两种型号,某月的产量如下表(单位:辆):
轿车 | 轿车 | 轿车 | |
舒适型 | 100 | 150 | |
标准型 | 300 | 450 | 600 |
按类用分层抽样的方法在这个月生产的轿车中抽取50辆,其中有类轿车10辆.
(I)求的值;
(II)用分层抽样的方法在类轿车中抽取一个容量为5的样本.将该样本看成一个总体,从中任取2辆,求至少有1辆舒适型轿车的概率;
(III)用随机抽样的方法从类舒适型轿车中抽取8辆,经检测它们的得分的值如下:9.4,8.6,9.2,9.6,8.7,9.3,9.0,8.2,把这8辆轿车的得分看成一个总体,从中任取一个数,设样本平均数为,求的概率.
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com