精英家教网 > 高中数学 > 题目详情
若函数y=f(x)是奇函数,则
1
-1
f(x)dx=(  )
分析:解题的关键是利用被积函数是奇函数,得到∫-11f(x)dx=0,从而解决问题.
解答:解:∵f(x)是奇函数,
故其图象关于原点对称,
根据定积分的几何意义是函数图象与x轴所围成的封闭图形的面积的代数和,知
函数f(x)在区间[-1,1]上的图象必定关于原点O对称,
从而函数图象与x轴所围成的封闭图形的面积的代数和为0,
故∫-11f(x)dx=0.
故选A.
点评:本题主要考查了偶函数的性质、定积分及定积分的应用.属于基础题.
练习册系列答案
相关习题

科目:高中数学 来源: 题型:

若函数y=f(x)是函数y=ax(0<a≠1)的反函数,其图象经过点(
a
,a),则函数y=f(x+
4
x
-3)的值域为
 

查看答案和解析>>

科目:高中数学 来源: 题型:

若函数y=f′(x)是函数y=f(x)的导函数,则f′(x)>0是函数f(x)为增函数的(  )

查看答案和解析>>

科目:高中数学 来源: 题型:

若函数y=f(x)是函数y=logax(a>0且a≠1)的反函数,且f(2)=
1
9
,则f(x)=(  )

查看答案和解析>>

科目:高中数学 来源: 题型:

若函数y=f(x)是函数y=ax(0<a≠1)的反函数,其图象过点(
a
,a)
,且函数y=-f(x+
m
x
-3)
在区间(2,+∞)上是增函数,则正数m的取值范围是
 

查看答案和解析>>

同步练习册答案