精英家教网 > 高中数学 > 题目详情
8.如果一个函数f(x)满足:(1)定义域为R;(2)任意x1,x2∈R,若x1+x2=0,则f(x1)+f(x2)=0;(3)任意x∈R,若t>0,总有f(x+t)>f(x),则f(x)可以是(  )
A.y=-xB.y=3xC.y=x3D.y=log3x

分析 先将已知条件转化为函数性质,如条件(2)反映函数是奇函数,条件(3)反映函数是单调增函数,再利用性质进行排除即可.

解答 解:由条件(1)定义域为R,排除D;
由条件(2)任意x1,x2∈R,若x1+x2=0,则f(x1)+f(x2)=0,即任意x∈R,f(-x)+f(x)=0,即函数f(x)为奇函数,排除B;
由条件(3)任意x∈R,若t>0,f(x+t)>f(x).即x+t>x时,总有f(x+t)>f(x),即函数f(x)为R上的单调增函数,排除A.
故选:C.

点评 本题考查了抽象函数表达式反映函数性质的判断方法,基本初等函数的单调性和奇偶性,排除法解选择题是常用方法.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:选择题

1.已知函数f(x)=ax+elnx与g(x)=$\frac{{x}^{2}}{x-elnx}$的图象有三个不同的公共点,其中e为自然对数的底数,则实数a的取值范围为(  )
A.a<-eB.a>1C.a>eD.a<-3或a>1

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

2.已知定义在R上的函数f(x)=$\frac{ax}{{{x^2}+1}}$+1,a∈R以下说法正确的是(  )
①函数f(x)的图象是中心对称图形
②函数f(x)有两个极值
③函数f(x)零点个数最多为三个
④当a>0时,若1<m<n,则f(m)+f(n)>2f($\frac{m+n}{2}$)
A.①③B.②④C.①④D.②③

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

16.已知等比数列{an}中,a1•a9=64,a3+a7=20,则a35=(  )
A.49B.$\frac{1}{{4}^{6}}$C.$\frac{1}{{4}^{6}}$或49D.-49

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

3.在直角坐标系xOy中,直线l:$\left\{\begin{array}{l}{x=tcosα}\\{y=tsinα}\end{array}\right.$(t为参数,α∈(0,$\frac{π}{2}$))与圆C:(x-1)2+(y-2)2=4相交于点A,B,以O为极点,x轴正半轴为极轴建立极坐标系.
(1)求直线l与圆C的极坐标方程;
(2)求$\frac{1}{|OA|}$$+\frac{1}{|OB|}$的最大值.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

13.如果方程x2-4ax+3a2=0的一根小于1,另一根大于1,那么实数a的取值范围是(  )
A.$\frac{1}{3}<a<1$B.a>1C.$a<\frac{1}{3}$D.a=1

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

20.将25个数排成五行五列:

已知第一行成等差数列,而每一列都成等比数列,且五个公比全相等.若a24=4,a41=-2,a43=10,则a11×a55的值为-11.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

17.已知圆O的方程为 x2+y2=9,若抛物线C过点A(-1,0),B(1,0),且以圆O的切线为准线,则抛物线C的焦点F的轨迹方程为(  )
A.$\frac{{x}^{2}}{9}$-$\frac{{y}^{2}}{8}$=1(x≠0)B.$\frac{{x}^{2}}{9}$+$\frac{{y}^{2}}{8}$=1(x≠0)C.$\frac{{x}^{2}}{9}$-$\frac{{y}^{2}}{8}$=1(y≠0)D.$\frac{{x}^{2}}{9}$+$\frac{{y}^{2}}{8}$=1(y≠0)

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

18.已知$α∈({0,\frac{π}{2}}),cosα=\frac{3}{5}$.
(1)求$sin({\frac{π}{6}+α})$的值;  
 (2)若tan(α+β)=3,求tanβ.

查看答案和解析>>

同步练习册答案