精英家教网 > 高中数学 > 题目详情
14.函数y=$\frac{\sqrt{4-{2}^{x}}}{x}$的定义域为{x|x≤2且x≠0}.

分析 根据二次根式的性质,得到不等式组,解出即可.

解答 解:由题意得:
$\left\{\begin{array}{l}{x≠0}\\{4{-2}^{x}≥0}\end{array}\right.$,
解得:x≤2且x≠0,
故答案为:{x|x≤2且x≠0}.

点评 本题考查了函数的定义域问题,是一道基础题.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:填空题

11.已知i是虚数单位,则(1+i)(1-i)=2.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

12.已知函数f(x)=$\left\{\begin{array}{l}{\frac{1}{x-1},x<0}\\{x,0<x<1}\\{1,x>1}\end{array}\right.$,求当x→0时,f(x)的左、右极限,并说明当x→0时,函数极限是否存在.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

2.已知二次函数y=f(x)在(-∞,2]上是增函数,在[2,+∞)上是减函数,图象的顶点在直线y=x-1上,并且图象经过点(-1,-8).
(1)求二次函数y=f(x)的解析式;
(2)若f(x)+m<0对x∈R恒成立,求实数m的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

9.已知复数z=-5+6i,则|z+$\overline{z}$|的值为10.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

19.已知随机变量ξ的分布列为ξ=-1,0,1,对应P=$\frac{1}{2}$,$\frac{1}{6}$,$\frac{1}{3}$,且设η=2ξ+1,则η的期望为(  )
A.-$\frac{1}{6}$B.$\frac{2}{3}$C.$\frac{29}{36}$D.1

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

6.随机变量ξ服从正态分布N(2,σ2),P(ξ≤4)=0.84,则P(ξ<0)=(  )
A.0.16B.0.32C.0.68D.0.84

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

3.已知i为虚数单位,则$\frac{1+i}{{{{(1-i)}^2}}}$=$-\frac{1}{2}+\frac{1}{2}i$.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

4.设有一组圆Ck:(x-k)2+(y-k)2=4,(k∈R),下命题正确的是①②③⑤(写出所有正确结论编号).
①不论k如何变化,圆心Ck始终在一条直线上;
②所有圆Ck均不经过点(3,0);
③存在一条定直线始终与圆Ck相切;
④当k=0时,若圆Ck上至少有一点到直线x+y+m=0的距离为1,则m的取值范围为(3$\sqrt{2}$,+∞);
⑤若k$∈(\frac{\sqrt{2}}{2},\frac{3\sqrt{2}}{2})$,若圆Ck上总存在两点到原点的距离为1.

查看答案和解析>>

同步练习册答案