精英家教网 > 高中数学 > 题目详情
在平面直角坐标系中,以原点O为极点,x轴正半轴为极轴建立极坐标系,已知曲线C1的极坐标方程为ρ=1,曲线C2的参数方程为
x=1+2cosα
y=1+2sinα
(α为参数).则两曲线的公共弦长为
 
考点:简单曲线的极坐标方程,参数方程化成普通方程
专题:坐标系和参数方程
分析:首先把圆的极坐标方程转化成直角坐标方程,进一步把圆的参数方程转化成直角坐标方程,在求出公共弦所在的直线方程,利用圆心到直线的距离,进一步求出公共弦的长.
解答: 解:曲线C1的极坐标方程为ρ=1,
则整理成直角坐标方程为:x2+y2=1,
曲线C2的参数方程为
x=1+2cosα
y=1+2sinα
(α为参数).
整理成直角坐标方程为:(x-1)2+(y-1)2=4,
则:
x2+y2=1
(x-1)2+(y-1)2=4

公共弦所在的直线为:2x+2y-1=0.
则原点到直线的距离为:d=
|-1|
22+22
=
2
4

则公共弦成为:l=2
1-(
2
4
)2
=
14
2

故答案为:
14
2
点评:本题考查的知识要点:极坐标方程与直角坐标方程的转化,参数方程与直角坐标方程的转化,点到直线的距离公式的应用,勾股定理得应用.属于基础题型.
练习册系列答案
相关习题

科目:高中数学 来源: 题型:

设双曲线
x2
a2
-
y2
b2
=1
(a,b>0)与抛物线y2=2px(p>0)有共同的焦点F,过点F作与x轴垂直的直线l交抛物线于A、B两点,且与双曲线在第一象限内的交点为P,O为坐标原点,若
OP
OA
OB
(λ,μ∈R),λ22=
5
8
,则该双曲线的离心率为
 

查看答案和解析>>

科目:高中数学 来源: 题型:

函数f(x)=
1
x
-x是(  )
A、奇函数
B、偶函数
C、既是奇函数又是偶函数
D、非奇非偶函数

查看答案和解析>>

科目:高中数学 来源: 题型:

直线y=
3
3
x将圆(x-1)2=y2=1分割成的两段圆弧长之比是(  )
A、1:1B、1:2
C、1:3D、1:4

查看答案和解析>>

科目:高中数学 来源: 题型:

已知双曲线
x2
a2
-
y2
3
=1(a>0)的离心率为
2
,则a=(  )
A、
3
B、3
C、1
D、2

查看答案和解析>>

科目:高中数学 来源: 题型:

点P的直角坐标为(2,2
3
),则点P的一个极坐标为(  )
A、(4,
π
3
B、(4,
6
C、(4,-
π
6
D、(4,-
3

查看答案和解析>>

科目:高中数学 来源: 题型:

已知各项均为正数的等比数列{an}满足:a2012=a2011+2a2010,若
aman
=2a1,则
1
m
+
5
n
的最小值为
 

查看答案和解析>>

科目:高中数学 来源: 题型:

有如下命题:命题p:设集合M={x|0<x≤3},N={x|0<x≤2},则“a∈M”是“a∈N”的充分而不必要条件;命题q:“?x0∈R,x02-x0-1>0”的否定是“?x0∈R,x02-x0-1≤0”,则下列命题中为真命题的是(  )
A、p∧qB、p∧(¬q)
C、p∨qD、p∨(¬q)

查看答案和解析>>

科目:高中数学 来源: 题型:

已知变量x,y满足
x≥1
y≥1
x+y-3≤0
目标函数是z=2x+y,z的最大值是(  )
A、2B、3C、4D、5

查看答案和解析>>

同步练习册答案