精英家教网 > 高中数学 > 题目详情
(2012•南京二模)某单位设计一个展览沙盘,现欲在沙盘平面内,布设一个对角线在l上的四边形电气线路,如图所示.为充分利用现有材料,边BC,CD用一根5米长的材料弯折而成,边BA,AD用一根9米长的材料弯折而成,要求∠A和∠C互补,且AB=BC.
(1)设AB=x米,cosA=f(x),求f(x)的解析式,并指出x的取值范围;
(2)求四边形ABCD面积的最大值.
分析:(1)在△ABD与△CBD中,分别利用余弦定理,即可确定f(x)的解析式,及x的取值范围;
(2)四边形ABCD的面积S=
1
2
(AB•AD+CB•CD)sinA=
(x2-4)(x2-14x+49)
,构建函数g(x)=(x2-4)( x2-14x+49),x∈(2,5),求导函数,即可求得四边形ABCD面积的最大值.
解答:解:(1)设AB=x米,则BC=x米,CD=5-x米,AD=9-x米,
则有5-x>0,即x<5.
在△ABD中,由余弦定理得BD2=AB2+AD2-2AB•AD•cosA.
同理,在△CBD中,BD2=CB2+CD2-2CB•CD•cosC. …(3分)
因为∠A和∠C互补,所以AB2+AD2-2AB•AD•cosA=CB2+CD2-2CB•CD•cosC=CB2+CD2+2CB•CD•cosA. …(5分)
即x2+(9-x)2-2 x(9-x)cosA=x2+(5-x)2+2 x(5-x)cosA.
解得cosA=
2
x
,即f(x)=
2
x

由余弦的定义,有
2
x
<1,则x>2,
故x∈(2,5).     …(8分)
(2)四边形ABCD的面积S=
1
2
(AB•AD+CB•CD)sinA=
1
2
[x(5-x)+x(9-x)]
1-cos2A
=
(x2-4)(x2-14x+49)
.…(11分)
记g(x)=(x2-4)(x2-14x+49),x∈(2,5).
由g′(x)=2x(x2-14x+49)+(x2-4)(2 x-14)=2(x-7)(2 x2-7 x-4)=0,
∴x=4或x=7或x=-
1
2

∵x∈(2,5),∴x=4.                    …(14分)
所以函数g(x)在区间(2,4)内单调递增,在区间(4,5)内单调递减.
因此g(x)的最大值为g(4)=12×9=108.
所以S的最大值为
108
=6
3

答:所求四边形ABCD面积的最大值为6
3
m2.    …(16分)
点评:本题考查函数解析式,考查余弦定理的运用,考查四边形面积的计算,考查利用导数求函数的最值,正确表示四边形的面积是关键.
练习册系列答案
相关习题

科目:高中数学 来源: 题型:

(2012•南京二模)下列四个命题
①“?x∈R,x2-x+1≤1”的否定;
②“若x2+x-6≥0,则x>2”的否命题;
③在△ABC中,“A>30°“sinA>
12
”的充分不必要条件;
④“函数f(x)=tan(x+φ)为奇函数”的充要条件是“φ=kπ(k∈z)”.
其中真命题的序号是
.(把真命题的序号都填上)

查看答案和解析>>

科目:高中数学 来源: 题型:

(2012•南京二模)设向量
a
=(2,sinθ),
b
=(1,cosθ),θ为锐角.
(1)若
a
b
=
13
6
,求sinθ+cosθ的值;
(2)若
a
b
,求sin(2θ+
π
3
)的值.

查看答案和解析>>

科目:高中数学 来源: 题型:

(2012•南京二模)已知
a+3ii
=b-i
,其中a,b∈R,i为虚数单位,则a+b=
4
4

查看答案和解析>>

科目:高中数学 来源: 题型:

(2012•南京二模)在面积为2的△ABC中,E,F分别是AB,AC的中点,点P在直线EF上,则
PC
PB
+
BC
2
的最小值是
2
3
2
3

查看答案和解析>>

科目:高中数学 来源: 题型:

(2012•南京二模)一块边长为10cm的正方形铁片按如图所示的阴影部分裁下,然后用余下的四个全等的等腰三角形作侧面,以它们的公共顶点p为顶点,加工成一个如图所示的正四棱锥形容器.当x=6cm时,该容器的容积为
48
48
cm3

查看答案和解析>>

同步练习册答案