精英家教网 > 高中数学 > 题目详情

设a∈R,f(x)=数学公式是奇函数,
(1)求a的值;
(2)如果g(n)=数学公式(n∈N+),试比较f(n)与g(n)的大小(n∈N+).

解:∵(1)f(x)是定义在R上的奇函数,∴f(0)=0,2a-2=0,解得a=1.
经验证a=1,f(x)是奇函数,∴a=1.
(2)由(1)可知:f(x)=,∴f(n)=
∴f(n)-g(n)=
只要比较2n与2n+1的大小即可.
当n=1,2时,f(n)<g(n);当n≥3时,2n>2n+1,f(n)>g(n).
下面证明,n≥3时,2n>2n+1,即f(x)>g(x).
①n=3时,23>2×3+1,显然成立,
②假设n=k(k≥3,k∈N+)时,2k>2k+1,
那么n=k+1时,2k+1=2×2k>2(2k+1).
2(2k+1)-[2(k+1)+1]=4k+2-2k-3=2k-1>0(∵k≥3),
有2k+1>2(k+1)+1.
∴n=k+1时,不等式也成立,由①②可以断定,n≥3,n∈N+时,2n>2n+1.
结论:n=1,2时,f(n)<g(n);当n≥3,n∈N+时,f(n)>g(n).
分析:(1)利用奇函数的定义即可得出;
(2)利用作差法和数学归纳法即可得出.
点评:熟练掌握奇函数的定义、作差法和数学归纳法是解题的关键.
练习册系列答案
相关习题

科目:高中数学 来源: 题型:

设a∈R,f(x)=cosx(asinx-cosx)+cos2(
π
2
-x)
,满足f(-
π
3
)=f(0)

(1)求f(x)的最大值及此时x取值的集合;
(2)求f(x)的增区间.

查看答案和解析>>

科目:高中数学 来源: 题型:

(2012•杨浦区二模)设a∈R,f(x)=
a•2x-a-2
2x+1
为奇函数.
(1)求实数a的值;
(2)设g(x)=2log2
1+x
k
),若不等式f-1(x)≤g(x)在区间[
1
2
2
3
]上恒成立,求实数k的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:

(2012•杨浦区二模)设a∈R,f(x)=
a•2x-a-2
2x+1
为奇函数.
(1)求函数F(x)=f(x)+2x-
4
2x+1
-1的零点;
(2)设g(x)=2log2
1+x
k
),若不等式f-1(x)≤g(x)在区间[
1
2
2
3
]上恒成立,求实数k的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:

(2012•安徽模拟)设a∈R,f(x)=cosx(asinx-cosx)+sin2x的定义域是[
π
4
11
24
π],f(
π
4
)=
3
.给出下列几个命题:
①f(x)在x=
π
4
处取得小值;
[
5
12
π,
11
24
π]
是f(x)的一个单调递减区间;
③f(x)的最大值为2;
④使得f(x)取得最大值的点仅有一个x=
π
3

其中正确命题的序号是
②③④
②③④
.(将你认为正确命题的序号都填上)

查看答案和解析>>

科目:高中数学 来源: 题型:

设a∈R,f(x)=cosx(asinx-cosx)+cos2
π
2
-x)满足f(-
π
3
)=f(0)
,当x∈[
π
4
11π
24
]
时,则f(x)的值域为(  )

查看答案和解析>>

同步练习册答案