精英家教网 > 高中数学 > 题目详情

【题目】,点轴上,点轴上,且.

(1)当点轴上运动时,求点的轨迹的方程;

(2)设点是轨迹上的动点,点轴上,圆内切于,求的面积的最小值.

【答案】(1);(2).

【解析】试题分析:(1)依据题设条件直接建立坐标之间的等量关系(轨迹方程);(2)依据题设条件建立关于三角形面积公式的函数关系,最后再运用所学知识求其最小值:

试题解析:

解:(1)设,由,得点为线段的中点,

,∴.

,得.

所以动点的轨迹的方程为.

(2)设,且

∴直线的方程为,整理得: .

∵圆内切于,可得与圆相切,∴

注意到,化简得:

同理可得:

因此,是方程的两个不相等的实数根.

根据根与系数的关系,化简整理可得

由此可得的面积为

∴当时,即当时,的面积的最小值为8.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:

【题目】【2017银川一中模拟】如图,在直角梯形ABCD中,AB∥CD,AB⊥AD,且AB=AD=CD=1.现以AD为一边向梯形外作矩形ADEF,然后沿边AD将矩形ADEF翻折,使平面ADEF与平面ABCD垂直.

(1)求证:BC⊥平面BDE;

(2)若点D到平面BEC的距离为,求三棱锥F-BDE的体积.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】某学校为了实现60万元的生源利润目标,准备制定一个激励招生人员的奖励方案:在生源利润达到5万元时,按生源利润进行奖励,且资金y(单位:万元)随生源利润x(单位:万元)的增加而增加,但资金总数不超过3万元,同时奖金不超过利润的20%.现有三个奖励模型:y=0.2xy=log5xy=1.02x,其中哪个模型符合该校的要求?

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】如图,在四棱锥PABCD中,PC底面ABCD,底面ABCD是直角梯形,ABADABCDAB2AD2CD2EPB的中点.

(1)求证:平面EAC平面PBC

(2)若二面角PACE的余弦值为,求直线PA与平面EAC所成角的正弦值.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】在四棱锥中,分别为的中点,.

(1)求证:平面平面

(2)设,若平面与平面所成锐二面角,求的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知函数f(x)=exe-x(xRe为自然对数的底数).

(1)判断函数f(x)的奇偶性与单调性.

(2)是否存在实数t使不等式f(x-t)+f(x2-t2)≥0对一切x都成立?若存在求出t;若不存在请说明理由.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】一家医药研究所,从中草药中提取并合成了甲、乙两种抗“病毒”的药物,经试验,服用甲、乙两种药物痊愈的概率分别为.现已进入药物临床试用阶段,每个试用组由4位该病毒的感染者组成,其中2人试用甲种抗病毒药物,2人试用乙种抗病毒药物,如果试用组中,甲种抗病毒药物治愈人数超过乙种抗病毒药物的治愈人数,则称该组为“甲类组”.

(1)求一个试用组为“甲类组”的概率;

(2)观察3个试用组,用表示这3个试用组中“甲类组”的个数,求的分布列和数学期望.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】函数 处取得极值.

1)求 的单调区间;

2)若 在定义域内有两个不同的零点,求实数 的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】在直角坐标系xOy中,直线l的方程为x﹣y+4=0,曲线C的参数方程为

1)已知在极坐标系(与直角坐标系xOy取相同的长度单位,且以原点O为极点,以x轴正半轴为极轴)中,点P的极坐标为,判断点P与直线l的位置关系;

2)设点Q是曲线C上的一个动点,求它到直线l的距离的最小值.

查看答案和解析>>

同步练习册答案