精英家教网 > 高中数学 > 题目详情

【题目】已知圆和点.

(1)若点是圆上任意一点,求

(2)过圆 上任意一点 与点的直线,交圆于另一点,连接,求证:.

【答案】(1)2(2)见证明

【解析】

1)设点的坐标为,得出,利用两点间的距离公式以及将关系式

代入可求出的值;

2)对直线的斜率是否存在分类讨论。

①直线的斜率不存在时,由点的对称性证明结论;

②直线的斜率不存在时,设直线的方程为,设点,将直线的方程与圆的方程联立,列出韦达定理,通过计算直线的斜率之和为零来证明结论成立。

1)证明:

,因为点是圆 上任意一点,

所以

所以

2)①当直线的倾斜角为时,

因为点关于轴对称,所以.

②当直线的倾斜角不等于时,

设直线的斜率为,则直线的方程为

.

,则

.

.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:

【题目】如图,四边形ABCD为菱形,四边形ACEF为平行四边形,设BD与AC相交于点G,AB=BD=2,AE= ,∠EAD=∠EAB.
(1)证明:平面ACEF⊥平面ABCD;
(2)若AE与平面ABCD所成角为60°,求二面角B﹣EF﹣D的余弦值.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】在直角坐标系xOy中,直线l的参数方程为 (t为参数,α为直线的倾斜角).以平面直角坐标系xOy极点,x的正半轴为极轴,取相同的长度单位,建立极坐标系.圆的极坐标方程为ρ=2cosθ,设直线与圆交于A,B两点. (Ⅰ)求圆C的直角坐标方程与α的取值范围;
(Ⅱ)若点P的坐标为(﹣1,0),求 + 取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】某地区有小学21所,中学14所,大学7所,现采取分层抽样的方法从这些学校中抽取6所学校对学生进行视力调查。

I)求应从小学、中学、大学中分别抽取的学校数目。

II)若从抽取的6所学校中随机抽取2所学校做进一步数据分析,

1)列出所有可能的抽取结果;

2)求抽取的2所学校均为小学的概率。

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知椭圆 的右焦点F(1,0),椭圆Γ的左,右顶点分别为M,N.过点F的直线l与椭圆交于C,D两点,且△MCD的面积是△NCD的面积的3倍.
(Ⅰ)求椭圆Γ的方程;
(Ⅱ)若CD与x轴垂直,A,B是椭圆Γ上位于直线CD两侧的动点,且满足∠ACD=∠BCD,试问直线AB的斜率是否为定值,请说明理由.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】如图, 是正方形, 平面 .

(1)求证: 平面

(2)求证: 平面

(3)求四面体的体积.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】下列命题正确的是( )

A. 如果两条平行直线中的一条与一个平面平行,那么另一条也与这个平面平行

B. 若一条直线平行于两个相交平面,则这条直线与这两个平面的交线平行

C. 垂直于同一条直线的两条直线相互垂直

D. 若两条直线与第三条直线所成的角相等,则这两条直线互相平行

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知椭圆的两个焦点分别为,短轴的两个端点分别为,点在椭圆上,且满足,当变化时,给出下列三个命题:

①点的轨迹关于轴对称;②的最小值为2;

③存在使得椭圆上满足条件的点仅有两个,

其中,所有正确命题的序号是__________

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】在△ABC中,“cosA>cosB”是“sinA<sinB”的 (  )
A.充分非必要条件
B.必要非充分条件
C.充要条件
D.既非充分又非必要条件

查看答案和解析>>

同步练习册答案