精英家教网 > 高中数学 > 题目详情
20.已知数列{an}中,a1=4,an=an-1+2n-1+3(n≥2,n∈N*).
(Ⅰ)证明数{an-2n}是等差数列,并求{an}的通项公式;
(Ⅱ)设bn=an-3n,求bn的前n项和Tn

分析 (Ⅰ)由已知的等式利用等差数列的定义容易证明数{an-2n}是等差数列,并求{an}的通项公式;
(Ⅱ)由bn=an-3n,得到bn的通项公式,进一步求前n项和Tn

解答 (Ⅰ)证明:因为a1=4,an=an-1+2n-1+3(n≥2,n∈N*).
所以(an-2n)-(an-1-2n-1)=3(n≥2,n∈N*).
所以{an-2n}是等差数列;a1-21=2,所以
an-2n=3n-1,所以{an}的通项公式an=2n+3n-1;
(Ⅱ)设bn=an-3n=2n-1,所以{bn}的前n项和Tn=$\frac{2(1-{2}^{n})}{1-2}-n={2}^{n+1}-n-2$.

点评 本题考查了利用定义证明数列为等差数列,从而间接求出{an}的通项公式,并且利用了分组求和;属于中档题.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:选择题

2.设等差数列{an}的前n项和为Sn,若Sm-2=-4,Sm=0,Sm+2=12,则第m项am=(  )
A.0B.1C.3D.8

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

11.已知椭圆C1:$\frac{{x}^{2}}{{a}^{2}}$+$\frac{{y}^{2}}{{b}^{2}}$=1(a>b>0)的长轴长为4,离心率为$\frac{1}{2}$,F1,F2分别为其左右焦点.
(Ⅰ)求椭圆C1的方程;
(Ⅱ)在抛物线C:y2=4x上有两点M,N,椭圆C1上有两点P,Q,满足$\overrightarrow{M{F}_{2}}$与$\overrightarrow{N{F}_{2}}$共线,$\overrightarrow{P{F}_{2}}$与$\overrightarrow{Q{F}_{2}}$共线,且$\overrightarrow{P{F}_{2}}$•$\overrightarrow{M{F}_{2}}$=0,直线MN的斜率为k(k≠0),求四边形PMQN面积(用k表示).

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

8.(理)宜黄高速公路连接宜昌、武汉、黄石三市,全长约350公里,是湖北省大三角经济主骨架的干线公路之一.若某汽车从进入该高速公路后以不低于60千米/时且不高于120千米/时的速度匀速行驶,已知该汽车每小时的运输成本由固定部分和可变部分组成,固定部分为200元,可变部分与速度v(千米/时)的平方成正比(比例系数记为k).当汽车以最快速度行驶时,每小时的运输成本为488元.若使汽车的全程运输成本最低,其速度为100千米/小时.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

15.复数z=(1+i)2(2+i)的虚部是(  )
A.-2iB.-2C.4iD.4

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

5.在△ABC中,A,B,C所对的边分别是a,b,c,A=$\frac{2π}{3}$,且bcosC=3ccosB,则$\frac{b}{c}$的值为(  )
A.$\frac{\sqrt{13}-1}{2}$B.$\frac{1+\sqrt{13}}{2}$C.$\frac{\sqrt{13}}{2}$D.$\frac{\sqrt{14}}{2}$

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

12.已知等差数列{an}满足a1=4,a4+a6=16,则它的前10项和S10=(  )
A.138B.85C.23D.135

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

9.下列各式正确的是(  )
(1)($\frac{cosx}{x}$)′=$\frac{-sinx}{{x}^{2}}$ 
(2)[(x2+x+1)ex]′=(2x+1)ex
(3)($\frac{2x}{{x}^{2}+1}$)′=$\frac{2-2{x}^{2}}{({x}^{2}+1)^{2}}$
(4)(e3x+1)′=3e3x+1
A.(1)(2)B.(3)(4)C.(2)(3)D.(1)(4)

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

10.设x∈Z,集合A是奇数集,集合B是偶数集,命题P:?x∈A,2x∈B,则命题P的否定是(  )
A.?x∈A,2x∈BB.?x∉A,2x∉BC.?x∈A,2x∉BD.?x∉A,2x∉B

查看答案和解析>>

同步练习册答案