精英家教网 > 高中数学 > 题目详情
若椭圆与抛物线有公共点,则实数a的取值范围是_____________;
 

分析:联立方程,将椭圆与抛物线有公共点,转化为方程2y-(4a-1)y+2a-2=0至少有一个非负根,求出两根皆负时,实数a的取值范围,即可求得结论.
解答:解:椭圆x+4(y-a)=4与抛物线x2=2y联立可得2y=4-4(y-a)
∴2y-(4a-1)y+2a-2=0.
∵椭圆x+4(y-a)=4与抛物线x=2y有公共点,
∴方程2y-(4a-1)y+2a-2=0至少有一个非负根.
∴△=(4a-1)-16(a2-1)=-8a+17≥0,∴a≤
又∵两根皆负时,由韦达定理可得2a2>2,4a-1<0,∴-1<a<1且a<,即a<-1.
∴方程2y-(4a-1)y+2a-2=0至少有一个非负根时,-1≤a≤
故答案为:-1≤a≤
点评:本题考查椭圆与抛物线的位置关系,考查学生分析转化问题的能力,考查计算能力,正确合理转化是关键.
练习册系列答案
相关习题

科目:高中数学 来源:不详 题型:解答题

(本小题满分14分)
如图,椭圆ab>0)的一个焦点为F(1,0),且过点(2,0).
(Ⅰ)求椭圆C的方程;
(Ⅱ)若AB为垂直于x轴的动弦,直线l:x=4与x轴交于点N,直线AFBN交于点M.
(ⅰ)求证:点M恒在椭圆C上;
(ⅱ)求△AMN面积的最大值.

查看答案和解析>>

科目:高中数学 来源:不详 题型:单选题

已知直线,则抛物线上到直线距离最小的点的坐标为(   )
A.B.C.D.

查看答案和解析>>

科目:高中数学 来源:不详 题型:解答题

(本题满分16分,第(1)小题4分,第(2)小题8分,第(3)小题4分)
已知椭圆的左右焦点分别为,短轴两个端点为,且四边形是边长为2的正方形。
(1)求椭圆方程;
(2)若分别是椭圆长轴的左右端点,动点满足,连接,交椭圆于。证明:为定值;
(3)在(2)的条件下,试问轴上是否存在异于点的定点,使得以为直径的圆恒过直线的交点,若存在,求出点的坐标;若不存在,请说明理由。

查看答案和解析>>

科目:高中数学 来源:不详 题型:解答题

(本小题共14分)
已知椭圆的中点在原点O,焦点在x轴上,点是其左顶点,点C在椭圆上且
(I)求椭圆的方程;
(II)若平行于CO的直线和椭圆交于MN两个不同点,求面积的最大值,并求此时直线的方程.

查看答案和解析>>

科目:高中数学 来源:不详 题型:解答题

如图,在以点O为圆心,AB为直径的半圆中,D为半圆弧的中点, P为半圆弧上一点,且AB=4,∠POB=30°,双曲线C以A,B为焦点且经过点P.
(Ⅰ)建立适当的平面直角坐标系,求双曲线C的方程;
(Ⅱ)设过点D的直线l与双曲线C相交于不同两点E、F,
若△OEF的面积不小于2,求直线l的斜率的取值范围.

查看答案和解析>>

科目:高中数学 来源:不详 题型:解答题

如图,等腰直角三角形ABC的斜边AB轴上,原点OAB的中点,DOC的中点.以AB为焦点的椭圆E经过点D
(1)求椭圆E的方程;
(2)过点C的直线与椭圆E相交于不同的两点MN,点M在点CN之间,且,求的取值范围.

查看答案和解析>>

科目:高中数学 来源:不详 题型:单选题

已知点在以原点为圆心的单位圆上运动,则点的轨迹是(      )
A.圆B.椭圆C.双曲线D.抛物线

查看答案和解析>>

科目:高中数学 来源:不详 题型:单选题

若抛物线的焦点与椭圆的左焦点重合,则p的值为
A.-2B.2C.-4D.4

查看答案和解析>>

同步练习册答案