精英家教网 > 高中数学 > 题目详情
6.计算:lg2+lg5=1;lg25+lg2•lg5+lg2=1.

分析 直接利用对数的运算法则求解即可.

解答 解:lg2+lg5=lg(2×5)=lg10=1;
lg25+lg2•lg5+lg2
=(lg5+lg2)•lg5+lg2
=lg5+lg2
=1.
故答案为:1;1.

点评 本题考查对数的运算法则的应用,考查计算能力.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:解答题

16.己知函数f(x)=-x2+|x-a|,a∈R.
(1)讨论f(x)的奇偶性,并证明你的结论;
(2)当a=-1时,求f(x)的值域;
(3)当a≤0时,求f(x)的最大值.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

17.已知函数y=4x+$\frac{1}{x}$(x>0),那么当y取得最小值时,x的值是(  )
A.4B.2C.1D.$\frac{1}{2}$

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

14.已知函数f(x)=x2+bx+c满足f(-1)=f(3)=0
(Ⅰ)求b和c的值;
(Ⅱ)若f(x)在[a,a+1]上的最小值为g(a);
(Ⅲ)解不等式g(a)+3≤0.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

1.解不等式log2(x2-3x)<2.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

11.设A={x||x-$\frac{1}{2}$|<0},B={x||2x+3|>1}.求A∩B,A∪B.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

2.设α∈R,函数f(x)=$\sqrt{2}$sin2xcosα+$\sqrt{2}$cos2xsinα-$\sqrt{2}$cos(2x+α)+cosα,x∈R.
(1)若α∈[$\frac{π}{4}$,$\frac{π}{2}$],求f(x)在区间[0,$\frac{π}{2}$]上的最大值;
(2)若f(x)=3,求a与x的值.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

19.已知函数f(x)=$\frac{{x}^{2}-1}{{x}^{2}+1}$,x为一切实数,求f(x)的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

20.已知函数f(x)是偶函数,且当x≥0时有f(x)=x(1+x),试求当x<0时,f(x)的函数表达式.

查看答案和解析>>

同步练习册答案