精英家教网 > 高中数学 > 题目详情

【题目】已知上的偶函数,当时, .

1)当时,求的解析式;

2)当时,试比较的大小;

3)求最小的整数,使得存在实数,对任意的,都有.

【答案】(1)当时, ;(2时,

时, ;当时, ;(3)最小整数.

【解析】试题分析:(1)当时, ,利用为R上的偶函数,当时, ,可求函数的解析式;(2)当时, 单调递增,而是偶函数,所以上单调递减,从而可得当时, ;当时, ;当时,
(3)转化为恒成立,从而有求利用建立关系, 由此可求适合题意的最小整数m的值.

试题解析:(1)当时,

(2)当时, 单调递增,而是偶函数,所以上单调递减,所以

所以当时, ;当时,

时,

(3)当时, ,则由,得,即恒成立

从而有恒成立,因为

所以

因为存在这样的,所以,即

,所以适合题意的最小整数.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:

【题目】函数f(x)=log (2x﹣x2)的单调递减区间为( )
A.(0,2)
B.(﹣∞,1]
C.[1,2)
D.(0,1]

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】设点的坐标分别为,直线相交于点,且它们的斜率之积.

(1)求点的轨迹方程;

(2)在点的轨迹上有一点且点轴的上方, ,求的范围.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】在三棱柱ABC﹣A1B1C1中,底面为正三角形,侧棱垂直底面,AB=2,AA1=6.若E,F分别是棱BB1 , CC1上的点,且BE=B1E,C1F= CC1 , 则异面直线A1E与AF所成角的余弦值为(
A.﹣
B.
C.﹣
D.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】如图,经过B(1,2)作两条互相垂直的直线l1和l2 , l1交y轴正半轴于点A,l2交x轴正半轴于点C.

(1)若A(0,1),求点C的坐标;
(2)试问是否总存在经过O,A,B,C四点的圆?若存在,求出半径最小的圆的方程;若不存在,请说明理由.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】函数y=loga(x+2)﹣1(a>0,a≠1)的图象恒过定点A,若点A在直线mx+ny+1=0上,其中m>0,n>0,则 + 的最小值为(
A.3+2
B.3+2
C.7
D.11

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知函数f(x)=4tanxsin( ﹣x)cos(x﹣ )﹣
(1)求f(x)的定义域与最小正周期;
(2)讨论f(x)在区间[﹣ ]上的单调性.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知函数

(1) 当时,解关于的不等式

(2) 若对任意时,恒有成立,求实数的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知函数f(x)= ,若方程f(x)=a有四个不同的解x1 , x2 , x3 , x4 , 且x1<x2<x3<x4 , 则x3(x1+x2)+ 的取值范围是(
A.(﹣1,+∞)
B.(﹣1,1]
C.(﹣∞,1)
D.[﹣1,1)

查看答案和解析>>

同步练习册答案