精英家教网 > 高中数学 > 题目详情

【题目】下列四个命题中,真命题的序号有__________.(写出所有真命题的序号)①若,则“”是“”成立的充分不必要条件;②命题“使得”的否定是 “均有”;③命题“若,则”的否命题是“若,则”;④函数在区间上有且仅有一个零点.

【答案】①②③④

【解析】

根据不等式性质和反例可判断出①正确;根据含量词命题的否定可知②正确;根据绝对值不等式的解法可求得③正确;利用导数可得到上单调递增,再结合零点存在定理可确定零点个数,知④正确.

由不等式性质可知,充分条件成立

时,若,则,必要条件不成立

”是“”的充分不必要条件,①正确

②根据特称命题的否定,可知原命题的否定为:,均有,②正确

等价于,解得:,可知命题“若,则”的否命题是“若,则”③正确

,则当时, 上单调递增

上有且仅有一个零点,④正确

本题正确结果:①②③④

练习册系列答案
相关习题

科目:高中数学 来源: 题型:

【题目】已知集合A={x|y=lg(x-)},B={x|-cx<0,c>0},若AB,则实数c的取值范围是(  )

A.(0,1]B.[1,+∞)

C.(0,1)D.(1,+∞)

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】随机抽取了40辆汽车在经过路段上某点时的车速(km/h),现将其分成六段: ,后得到如图所示的频率分布直方图.

(Ⅰ)现有某汽车途经该点,则其速度低于80km/h的概率约是多少?

(Ⅱ)根据直方图可知,抽取的40辆汽车经过该点的平均速度约是多少?

(Ⅲ)在抽取的40辆且速度在(km/h)内的汽车中任取2辆,求这2辆车车速都在(km/h)内的概率.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】我国古代的《洛书》中记载着世界上最古老的一个幻方:如图,将129填入的方格内,使三行,三列和两条对角线上的三个数字之和都等于15.一般地,将连续的正整数填入个方格中,使得每行,每列和两条对角线上的数字之和都相等,这个正方形叫做阶幻方.阶幻方的对角线上的数字之和为,如图三阶幻方的,那么的值为__________ .

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】如图,在三棱柱ABCA1B1C1中,已知MN分别为线段BB1A1C的中点,MNAA1,且MA1MC.求证:

1MN平面ABC

2)平面A1MC⊥平面A1ACC1.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】给出命题:(1)对立事件一定是互斥事件.2)若事件满足,则为对立事件.3)把3张红桃牌随机分给甲、乙、丙三人,每人1张,事件甲得红桃与事件乙得红桃是对立事件.4)一个人打靶时连续射击两次,事件至少有一次中靶的对立事件是两次都不中靶.其中正确的命题个数为(

A.4B.3C.2D.1

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】如图,AB是圆O的直径,点C是圆O上异于A,B的点,PO垂直于圆O所在的平面,且PO=OB=1.

(1)若D为线段AC的中点,求证:AC⊥平面PDO;

(2)求三棱锥P-ABC体积的最大值;

(3)若,点E在线段PB上,求CE+OE的最小值.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知数列是公差为2的等差数列,且成等比数列.数列满足:.

)求数列的通项公式;

)设数列的前n项和为,且,若对恒成立,求正整数k的值.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知等差数列{an}的前n项和为Sn,等比数列{bn}的前n项和为Tn,a1=﹣1,b1=1,a2+b2=2.

(1)若a3+b3=5,求{bn}的通项公式;

(2)若T3=21,求S3

查看答案和解析>>

同步练习册答案