精英家教网 > 高中数学 > 题目详情

【题目】,已知函数

(Ⅰ)求函数的单调区间;

(Ⅱ)求函数上的最小值

(Ⅲ)若, 求使方程有唯一解的的值

【答案】(Ⅰ),则上递增,,则在在上递减,上递增,(Ⅱ)(Ⅲ).

【解析】

(1)令大于0、小于0,讨论a的范围求解.

(2)直接由(1)的单调性得最小值.

(3),令递减,上递增,有唯一解,得到a的关系,转化为的方程,求得进而求得a.

(Ⅰ)定义域为

,则上递增

,则在在上递减,上递增, (Ⅱ)由(Ⅰ)可知,时,上是增函数,

②当时,上递减,上递增,

综上,

(Ⅲ),由题意,得方程有唯一解,又

,定义域为

递减,上递增,

有唯一解,

,易知递增,且

∴方程的解为,解得

故,当时,方程有唯一解时的值为

练习册系列答案
相关习题

科目:高中数学 来源: 题型:

【题目】如图,直三棱柱ABC-A1B1C1中,D,E分别是ABBB1的中点.

)证明: BC1//平面A1CD;

)设AA1= AC=CB=2AB=2,求三棱锥CA1DE的体积.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】某批发市场一服装店试销一种成本为每件元的服装规定试销期间销售单价不低于成本单价,且获利不得高于成本的,经试销发现销售量(件)与销售单价(元)符合一次函数,且时,时,.

(1)求一次函数的解析式,并指出的取值范围;

(2)若该服装店获得利润为元,试写出利润与销售单价之间的关系式;销售单价定为多少元时,可获得最大利润最大利润是多少元?

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】如图所示,已知椭圆 过点,离心率为,左、右焦点分别为,点为直线上且不在轴上的任意一点,直线与椭圆的交点分别为为坐标原点.

1)求椭圆的标准方程;

2)设直线的斜线分别为.

i)证明:

ii)问直线上是否存在点,使得直线的斜率满足?若存在,求出所有满足条件的点的坐标;若不存在,说明理由.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知二次函数y=f1(x)的图象以原点为顶点且过点(1,1),反比例函数y=f2(x)的图象与直线y=x的两个交点间距离为8,f(x)= f1(x)+ f2(x).

(Ⅰ) 求函数f(x)的表达式;

(Ⅱ) 证明:a>3,关于x的方程f(x)= f(a)有三个实数解.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知中心在坐标原点O的椭圆C经过点A,且点F0)为其右焦点.

(1)求椭圆C的方程;

(2)是否存在直线与椭圆C交于B,D两点,满足,且原点到直线l的距离为?若存在,求出直线的方程;若不存在,请说明理由.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】将一枚硬币抛10次,那么至少连续5次都出现正面的不同情形共______种。

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】知函数偶函数

(1)值;

(2)若函数,是否存在实数使得最小值为0,若存在,求出值;若不存在,请说明理由

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】如图,圆

(Ⅰ)若圆C与x轴相切,求圆C的方程;

(Ⅱ)已知,圆与x轴相交于两点(点在点的左侧).过点任作一条直线与圆相交于两点A,B.问:是否存在实数a,使得=?若存在,求出实数a的值,若不存在,请说明理由.

查看答案和解析>>

同步练习册答案