已知函数是定义在R上的奇函数,且,在[0,2]上是增函数,则下列结论:①若,则;②若
且③若方程在[-8,8]内恰有四个不同的角,则,其中正确的有 ( )
A.0个 | B.1个 | C.2个 | D.3个 |
D
解析解:由f(x+4)=-f(x)可得f(x+8)=f(x),此函数是以8为周期的周期函数,
又f(x)是奇函数,且在[0,2]上为增函数
∴f(x)在[-2,0]上也是增函数
当x∈[2,4]时,x-4∈[-2,0],且由已知可得f(x-4)=-f(x),则可得函数f(x)在[2,4]上单调递减,根据奇函数的对称性可知,f(x)在[-4,-2]上也是单调递减
①若0<x1<x2<4,且x1+x2=4,则0<x1<4-x1<4,即0<x1<2,-2<x1-4<0
由f(x)在[0,2]上是增函数可得f(x)在[-2,0]上也是增函数,则f(x1)>f(x1-4)=f(-x2)=-f(x2),则f(x1)+f(x2)>0;故①正确
②若0<x1<x2<4,且x1+x2=5,则0<x1<5-x1<4,即1<x1<5/2,f(x)在[0,2]上是增函数,由图可知:f(x1)>f(x2);故②正确;
③四个交点中两个交点的横坐标之和为2×(-6),另两个交点的横坐标之和为2×2,此时x1+x2+x3+x4=-12+4=-8,故③正确;
故答案为①②③
科目:高中数学 来源: 题型:单选题
在股票买卖过程中,经常用到两种曲线,一种是即时价格曲线y=f(x),一种是平均价格曲线 y=g(x)(如f(2)=3表示开始交易后第2小时的即时价格为3元;g(2)=4表示开始交易后两个小时内所有成交股票的平均价格为4元).下面所给出的四个图象中,实线表示y=f(x),虚线表示 y=g(x),其中可能正确的是( )
A B C D
查看答案和解析>>
科目:高中数学 来源: 题型:单选题
已知 y =" f" ( x ) 是定义在R 上的偶函数, 且在( 0 , + )上是减函数,如果
x1 < 0 , x2 > 0 , 且| x1 | < | x2 | , 则有( )
A.f (-x1 ) + f (-x2 ) > 0 | B.f ( x1 ) + f ( x2 ) < 0 |
C. f (-x1 ) -f (-x2 ) > 0 | D.f ( x1 ) -f ( x2 ) < 0 |
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com