精英家教网 > 高中数学 > 题目详情

【题目】已知函数f(x)=(a∈R),给出两个命题:p:函数f(x)的值域不可能是(0,+∞);q:函数f(x)的单调递增区间可以是(-∞,-2].那么下列命题为真命题的是(  )

A. p∧q B. p∨(q)

C. (p)∧q D. (p)∧(q)

【答案】C

【解析】

先判断命题p、q的真假再判断复合命题的真假.

a=0,f(x)=的值域为(0,+,故命题p是假命题;

t=ax2+2x-1,f(t)=,易知f(t)=是减函数,

根据复合函数的单调性可知,要使函数f(x)的单调递增区间可以是(-∞,-2],只需使t=ax2+2x-1(-∞,-2]上单调递减,即解得0<a≤,故存在a0使得f(x)的单调递增区间为(-∞,-2],是真命题

进而可判断,是真命题的是(p) q.故选C.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:

【题目】已知函数f(x)是定义在R上的奇函数,且当x>0时,f(﹣x)+f(x+3)=0;当x∈(0,3)时,f(x)= ,其中e是自然对数的底数,且e≈2.72,则方程6f(x)﹣x=0在[﹣9,9]上的解的个数为(
A.4
B.5
C.6
D.7

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】淘宝网卖家在某商品的所有买家中,随机选择男、女买家各50位进行调查,他们的评分等级如下表:

(1)从评分等级为(4,5]的人中随机选取2人,求恰有1人是男性的概率.

(2)现规定评分等级在[0,3]为不满意该商品,在(3,5]为满意该商品.完成下列2×2列联表,并帮助卖家判断能否在犯错误的概率不超过0.05的前提下认为是否满意该商品与性别有关.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知曲线为参数),为参数).

(1)化的参数方程为普通方程,并说明它们分别表示什么曲线;

(2)若上的点对应的参数为上的动点,求的中点到直线为参数)距离的最小值.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】如图,在四棱锥P﹣ABCD中,底面ABCD为矩形,PA⊥平面ABCD,E为PD的中点.

(1)证明:PB∥平面AEC;
(2)已知AP=AB=1,AD= ,求二面角D﹣AE﹣C的余弦值.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】定义在(﹣∞,0)∪(0,+∞)上的函数f(x),如果对于任意给定的等比数列{an},{f(an)}仍是等比数列,则称f(x)为“保等比数列函数”.现有定义在(﹣∞,0)∪(0,+∞)上的如下函数:①f(x)=x2;②f(x)=2x;③f(x)= ;④f(x)=ln|x|.则其中是“保等比数列函数”的f(x)的序号为(
A.①②
B.③④
C.①③
D.②④

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】线段AB外有一点C,∠ABC=60°,AB=200 km,汽车以80 km/h的速度由A向B行驶,同时摩托车以50 km/h的速度由B向C行驶,则运动开始________h后,两车的距离最小.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知过抛物线的焦点,斜率为的直线交抛物线于两点,且.

(1)求该抛物线的方程;

(2) 为坐标原点,为抛物线上一点,若,求的值.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知点A(x1,y1),B(x2,y2),M(1,0),=(3λ,4λ)(λ≠0),=-4,若抛物线y2=ax经过AB两点,a的值为(  )

A. 2 B. -2

C. -4 D. 4

查看答案和解析>>

同步练习册答案