【题目】设函数.
(1)若函数在上为减函数,求实数的最小值;
(2)若存在,使成立,求实数的取值范围.
【答案】(Ⅰ)最小值为;(II)
【解析】试题分析: 在上为减函数,等价于在上恒成立,进而转化为,根据二次函数的性质可得
命题“若存在, ,使成立”等价于
“当时,有 ”, 由易求,从而问题等价于“当时,有”,分 , 两种情况讨论:
当是易求,当时可求得的值域为,再按
两种情况讨论即可
解析:(1)由已知得,
因在上为减函数,故在上恒成立。
所以当时。
又,
故当时,即时, .
所以,于是,故的最小值为.
(2)命题“若存在, ,使成立”等价于
“当时,” ”,
由(1),当时, , .
问题等价于:“当时,有”.
当,由(1),在为减函数,
则,故.
当时,由于在上的值域为
(i),即, 在恒成立,故在上为增函数,
于是, ,矛盾。
(ii),即,由的单调性和值域知,
存在唯一,使,且满足:
当时, , 为减函数;当时, , 为增函数;
所以, ,
所以, ,与矛盾。
综上得
科目:高中数学 来源: 题型:
【题目】如图,在圆锥PO中,已知,圆O的直径,C是弧AB的中点,D为AC的中点.
(1)求异面直线PD和BC所成的角的正切值;
(2)求直线OC和平面PAC所成角的正弦值.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】在直角坐标系xOy中,以坐标原点为极点,x轴正半轴为极轴建立极坐标系,曲线C1的极坐标方程为ρcos θ=4.
(1)M为曲线C1上的动点,点P在线段OM上,且满足|OM|·|OP|=16,求点P的轨迹C2的直角坐标方程;
(2)设点A的极坐标为,点B在曲线C2上,求△OAB面积的最大值.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】已知函数f(x)是定义在R上的偶函数,且在区间[0,+∞)上单调递增,若实数a满足f(log2a)+f( a)≤2f(1),则a的取值范围是( )
A.
B.[1,2]
C.
D.(0,2]
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】(2015·湖南)如下图,直三棱柱ABC-A1B1C1的底面是边长为2的正三角形,E、F分别是BC、CC1的中点.
(1)证明:平面AEF⊥平面B1BCC1;
(2)若直线A1C与平面A1ABB1所成的角为45°,求三棱锥F-AEC的体积.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】已知函数f(x)=2x﹣ .
(1)若f(x)=2,求x的值;
(2)若2tf(2t)+mf(t)≥0对于t∈[1,2]恒成立,求实数m的取值范围.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】已知命题p:关于x的不等式ax>1,(a>0,a≠1)的解集是{x|x<0},命题q:函数y=lg(x2-x+a)的定义域为R,若p∨q为真,p∧q为假,求实数a的取值范围.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】某电视台“挑战主持人”节目的挑战者闯第一关需要回答三个问题,其中前两个问题回答正确各得分,回答不正确得分,第三个问题回答正确得分,回答不正确得分.如果一个挑战者回答前两个问题正确的概率都是,回答第三个问题正确的概率为,且各题回答正确与否相互之间没有影响.若这位挑战者回答这三个问题总分不低于分就算闯关成功.
(Ⅰ)求至少回答对一个问题的概率;
(Ⅱ)求这位挑战者回答这三个问题的总得分X的分布列;
(Ⅲ)求这位挑战者闯关成功的概率.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】据研究,甲磁盘受到病毒感染,感染的量y(单位: 比特数)与时间x(单位:秒)的函数关系是,乙磁盘受到病毒感染,感染的量y(单位: 比特数)与时间x(单位:秒)的函数关系是,显然当时,甲磁盘受到病毒感染增长率比乙磁盘受到病毒感染增长率大.试根据上述事实提炼一个不等式,并证明之.
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com