精英家教网 > 高中数学 > 题目详情

【题目】设函数

1)若函数上为减函数,求实数的最小值;

2)若存在,使成立,求实数的取值范围.

【答案】最小值为;(II

【解析】试题分析: 上为减函数,等价于上恒成立,进而转化为,根据二次函数的性质可得

命题“若存在, ,使成立”等价于

“当时, 易求,从而问题等价于“当时,有,分 , 两种情况讨论:

是易求,当时可求得的值域为,再按

两种情况讨论即可

解析:(1)由已知得

上为减函数,故上恒成立

所以当

故当时,即时, .

所以,于是,故的最小值为.

2)命题“若存在, ,使成立”等价于

“当时,

由(1),当时, .

问题等价于:“当时,有”.

,由(1),为减函数,

,故.

时,由于上的值域为

i,即 恒成立,故上为增函数,

于是, ,矛盾。

ii,即,由的单调性和值域知,

存在唯一,使,且满足:

时, 为减函数;当时, 为增函数;

所以,

所以, ,与矛盾。

综上得

练习册系列答案
相关习题

科目:高中数学 来源: 题型:

【题目】如图,在圆锥PO中,已知,圆O的直径,C是弧AB的中点,D为AC的中点.

(1)求异面直线PD和BC所成的角的正切值;

(2)求直线OC和平面PAC所成角的正弦值.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】在直角坐标系xOy中,以坐标原点为极点,x轴正半轴为极轴建立极坐标系,曲线C1的极坐标方程为ρcos θ=4.

(1)M为曲线C1上的动点,点P在线段OM上,且满足|OM|·|OP|=16,求点P的轨迹C2的直角坐标方程;

(2)设点A的极坐标为,点B在曲线C2上,求△OAB面积的最大值.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知函数f(x)是定义在R上的偶函数,且在区间[0,+∞)上单调递增,若实数a满足f(log2a)+f( a)≤2f(1),则a的取值范围是(
A.
B.[1,2]
C.
D.(0,2]

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】(2015·湖南)如下图,直三棱柱ABCA1B1C1的底面是边长为2的正三角形,EF分别是BCCC1的中点.

(1)证明:平面AEF⊥平面B1BCC1

(2)若直线A1C与平面A1ABB1所成的角为45°,求三棱锥FAEC的体积.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知函数f(x)=2x
(1)若f(x)=2,求x的值;
(2)若2tf(2t)+mf(t)≥0对于t∈[1,2]恒成立,求实数m的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知命题p:关于x的不等式ax1(a0a≠1)的解集是{x|x0},命题q:函数y=lg(x2xa)的定义域为R,若pq为真,pq为假,求实数a的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】某电视台“挑战主持人”节目的挑战者闯第一关需要回答三个问题,其中前两个问题回答正确各得分,回答不正确得分,第三个问题回答正确得分,回答不正确得分.如果一个挑战者回答前两个问题正确的概率都是,回答第三个问题正确的概率为,且各题回答正确与否相互之间没有影响.若这位挑战者回答这三个问题总分不低于分就算闯关成功.

(Ⅰ)求至少回答对一个问题的概率;

(Ⅱ)求这位挑战者回答这三个问题的总得分X的分布列;

(Ⅲ)求这位挑战者闯关成功的概率.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】据研究,甲磁盘受到病毒感染,感染的量y(单位: 比特数)与时间x(单位:秒)的函数关系是,乙磁盘受到病毒感染,感染的量y(单位: 比特数)与时间x(单位:秒)的函数关系是,显然当时,甲磁盘受到病毒感染增长率比乙磁盘受到病毒感染增长率大.试根据上述事实提炼一个不等式,并证明之.

查看答案和解析>>

同步练习册答案