精英家教网 > 高中数学 > 题目详情
设直线过点(0,a),其斜率为1,且与圆x2+y2=4相切,则a的值为(  )
A、±4
B、±2
2
C、4x+2y=5
D、4x-2y=5
考点:直线与圆的位置关系
专题:计算题,直线与圆
分析:设直线的方程,确定圆心、半径,将由点到直线的距离公式建立关于a的等式,解之即可得到a的值.
解答: 解:∵直线过点(0,a),且斜率为1
∴设直线为l,得其方程为y=x+a,即x-y+a=0
∵圆x2+y2=4的圆心为C(0,0),半径r=2
由直线l与圆相切,可得点C到直线l的距离等于半径,
|a|
2
=2,解之得a=±2
2

故选:B.
点评:本题给出斜率为1且过点(0,a)的直线与已知圆相切,求参数a的值,着重考查了直线的方程、圆的方程与直线与圆的位置关系等知识,属于中档题.
练习册系列答案
相关习题

科目:高中数学 来源: 题型:

已知奇函数f(x)在(-∞,0)上是单调减函数,且f(2)=0,则不等式(x-1)f(x-1)>0的解集为(  )
A、{x|-3<x<-1}
B、{x|-1<x<1或1<x<3}
C、{x|-3<x<0或1<x<3}
D、{x|-3<x<1或x>2}

查看答案和解析>>

科目:高中数学 来源: 题型:

2012年欧洲杯足球赛将于6月份在波兰和乌克兰两个国家举行,东道主波兰所在的A组共有四支球队,四支球队之间进行单循环比赛,共进行的比赛的场数为(  )
A、6B、12C、3D、8

查看答案和解析>>

科目:高中数学 来源: 题型:

F1、F2是椭圆
x2
4
+y2=1的左、右焦点,点P在椭圆上运动,则
PF1
PF2
的最大值是
 

查看答案和解析>>

科目:高中数学 来源: 题型:

如图,四边形ABCD内接于⊙O,过点A作⊙O的切线EP交CB的延长于P,已知∠EAD=∠PCA,证明:
(1)AD=AB;
(2)DA2=DC•BP.

查看答案和解析>>

科目:高中数学 来源: 题型:

已知圆心在直线2x-y-3=0上,且过点A(5,2)和点B(3,2),则圆C的方程为
 

查看答案和解析>>

科目:高中数学 来源: 题型:

已知函数f(x)=2sin(ωx+
π
6
)(ω>0),函数f(x)的图象与x轴两个相邻交点的距离为π,则f(x)的单调递增区间是
 

查看答案和解析>>

科目:高中数学 来源: 题型:

如图,p为⊙O外一点,过P点作⊙O的两条切线,切点分别为A,B,过PA的中点Q作割线交⊙O于C,D两点,若QC=1,CD=4,则PB=
 

查看答案和解析>>

科目:高中数学 来源: 题型:

已知函数f(x)=sin2x+2
3
cos2x-
3
,函数g(x)=mcos(2x-
π
6
)-2m+3(m>0),若?x1∈[0,
π
4
],总?x2∈[0,
π
4
],使得g(x1)=f(x2)成立,则实数m的取值范围为(  )
A、[1,2]
B、[1,
4
3
]
C、[
3
2
,2]
D、[
2
3
4
3
]

查看答案和解析>>

同步练习册答案