精英家教网 > 高中数学 > 题目详情
18.如图,在五面体ABCDEF中,四边形ABCD是边长为4的正方形,EF∥AD,
平面ADEF⊥平面ABCD,且BC=2EF,AE=AF,点G是EF的中点.
(Ⅰ)证明:AG⊥平面ABCD;
(Ⅱ)若直线BF与平面ACE所成角的正弦值为$\frac{\sqrt{6}}{9}$,求AG的长.

分析 (Ⅰ)分别推导出AG⊥EF,AG⊥AD,由此能证明AG⊥平面ABCD.
(Ⅱ)以A为原点,以AB,AD,AG分别为x轴、y轴和z轴,建立空间直角坐标系,由BF与平面ACE所成角的正弦值为$\frac{\sqrt{6}}{9}$,利用向量法能求出AG.

解答 (本小题满分12分)
(Ⅰ)证明:因为AE=AF,点G是EF的中点,
所以AG⊥EF.
又因为EF∥AD,所以AG⊥AD.…(3分)
因为平面ADEF⊥平面ABCD,平面ADEF∩平面ABCD=AD,
AG?平面ADEF,
所以AG⊥平面ABCD.…(6分)
(Ⅱ)解:因为AG⊥平面ABCD,AB⊥AD,所以AG、AD、AB两两垂直.
以A为原点,以AB,AD,AG分别为x轴、y轴和z轴,如图建立空间直角坐标系
则A(0,0,0),B(4,0,0),C(4,4,0),
设AG=t(t>0),则E(0,1,t),F(0,-1,t),
所以$\overrightarrow{BF}$=(-4,-1,t),$\overrightarrow{AC}$=(4,4,0),$\overrightarrow{AE}$=(0,1,t).…(8分)
设平面ACE的法向量为$\overrightarrow{n}$=(x,y,z),
由$\overrightarrow{AC}•\overrightarrow{n}$=0,$\overrightarrow{AE}•\overrightarrow{n}$=0,得$\left\{\begin{array}{l}{4x+4y=0}\\{y+tz=0}\end{array}\right.$,
令z=1,得$\overrightarrow{n}$=(t,-t,1).
因为BF与平面ACE所成角的正弦值为$\frac{\sqrt{6}}{9}$,
所以|cos<$\overrightarrow{BF},\overrightarrow{n}$>|=$\frac{|\overrightarrow{BF}•\overrightarrow{n}|}{|\overrightarrow{BF}|•|\overrightarrow{n}|}$=$\frac{\sqrt{6}}{9}$,…(10分)
即$\frac{|2t|}{\sqrt{17+{t}^{2}}•\sqrt{2{t}^{2}+1}}$=$\frac{\sqrt{6}}{9}$,解得t2=1或${t}^{2}=\frac{17}{2}$.
所以AG=1或AG=$\frac{\sqrt{34}}{2}$.…(12分)

点评 本题考查线面垂直的证明,考查满足条件的线段长的求法,是中档题,解题时要认真审题,注意向量法的合理运用.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:解答题

8.点P在椭圆3x2+y2=12上,OP倾斜角为60°,AB∥OP,A,B在椭圆上且都在x轴上方,求△ABP面积的最大值及此时直线AB的方程.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

9.已知数列{an}的首项a1=1,a2=3,前n项和为Sn且$\frac{{S}_{n+1}-{S}_{n}}{{S}_{n}-{S}_{n-1}}=\frac{{2a}_{n}+1}{{a}_{n}}$,(n≥2,n∈N*)设b1=1,bn+1=log2(an+1)+bn(n∈N*
(1)设cn=$\frac{{4}^{\frac{{b}_{n+1}-1}{n+1}}}{{a}_{n}{a}_{n+1}}$,记Gn=$\sum_{k=1}^{n}{c}_{k}$,试比较Gn与1的大小,并说明理由;
(2)若数列{ln}满足ln=log2(an+1)(n∈N*),在每两个lk与lk+1之间都插入2k-1(k=1,2,3,…,k∈N*)个2,使得数列{ln}变成了一个新的数列{tp},试问:是否存在正整数m,使得数列{tp}的前m项的和Tm=2015?如果存在,求出m的值:如果不存在,说明理由.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

6.如图,在四棱锥P-ABCD中,底面ABCD是正方形,PA=AB,PA⊥平面ABCD,E,F分别是BC,PB的中点.
(1)证明:EF∥平面PCD;
(2)求EF与平面PAD所成角的正弦值.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

13.如图,在四棱锥P-ABCD中,底面ABCD是正方形.已知AP=PB=AD=2,PD=2$\sqrt{2}$.
(Ⅰ)求证:AD⊥PB;
(Ⅱ)求四棱锥P-ABCD的体积V;
(Ⅲ)设PC与平面ABCD所成角的大小为θ,求tanθ的值.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

3.已知一个算法的程序框图如图所示,则y与x的函数关系式表示为y=$\left\{\begin{array}{l}{x}^{2}-1,x≥0\\ 2{x}^{2}-5,x<0\end{array}\right.$.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

10.已知极坐标系中的极点在直角坐标系的O′(-3,2)处,极轴与y轴负方向相同,则直角坐标系中点P(-3+$\sqrt{3}$,5)的极坐标为$(2\sqrt{3},\frac{5π}{6})$.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

7.如图所示的是一个圆台的侧面展开图,根据图中数据求这个圆台的表面积和体积.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

8.在平面直角坐标系中,O为坐标原点,A(1,2),B(7,5),C在线段AB上,且满足2|AC|=|BC|,则|OC|的长等于3$\sqrt{2}$.

查看答案和解析>>

同步练习册答案