精英家教网 > 高中数学 > 题目详情
5.设复数z=-3cosθ+isinθ.(i为虚数单位)
(1)当θ=$\frac{4}{3}$π时,求|z|的值;
(2)当θ∈[$\frac{π}{2}$,π]时,复数z1=cosθ-isinθ,且z1z为纯虚数,求θ的值.

分析 (1)化简复数然后求解复数的模.
(2)化简复数,利用复数是纯虚数,实部为0,虚部不为0,求解即可.

解答 解:(1)∵$θ=\frac{4}{3}π$,∴$z=-3cos\frac{4}{3}π+isin\frac{4}{3}π=\frac{3}{2}-\frac{{\sqrt{3}}}{2}i$
∴|z|=$\sqrt{(\frac{3}{2})^{2}+(-\frac{\sqrt{3}}{2})^{2}}$=$\sqrt{3}$.
(2)复数z=-3cosθ+isinθ.复数z1=cosθ-isinθ,
z1z=(-3cosθ+isinθ)(cosθ-isinθ)=-3cos2θ+sin2θ+4icosθsinθ,
z1z为纯虚数,可得:-3cos2θ+sin2θ=0,故tan2θ=3,此时4cosθsinθ≠0,满足题意.
因为$θ∈[\frac{π}{2},π]$,故$tanθ=-\sqrt{3}$,所以$θ=\frac{2π}{3}$.

点评 本题考查复数的基本概念,复数的模的求法,考查计算能力.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:解答题

18.在一梯形中作两条对角线,并联结它们的中点,所得的线段与下底再构成一个梯形,如此重复1975次,最后得到的梯形上底边长恰好与原来的梯形上底边长相等.若原梯形高为h,上底边长为a,求原梯形的面积.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

16.在平面直角坐标系中,以坐标原点为极点,x轴非负半轴为极轴,建立极坐标系,已知曲线C的极坐标方程为:ρsin2θ-6cosθ=0,直线l的参数方程为:$\left\{\begin{array}{l}{x=3+\frac{\sqrt{3}}{2}t}\\{y=\frac{1}{2}t}\end{array}\right.$(t为参数),l与C交于P1,P2两点.
(1)求曲线C的直角坐标方程及l的普通方程;
(2)已知P0(3,0),求||P0P1|-|P0P2||的值.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

13.在平面直角坐标系xOy中,直线l的参数方程为$\left\{\begin{array}{l}x=2+\frac{1}{2}t\\ y=\sqrt{3}+\frac{{\sqrt{3}}}{2}t\end{array}\right.$(t为参数).以坐标原点为极点,x轴的正半轴为极轴建立极坐标系,曲线C1的极坐标方程为ρ=2.
(Ⅰ) 若点M的直角坐标为(2,$\sqrt{3}$),直线l与曲线C1交于A、B两点,求|MA|+|MB|的值.
(Ⅱ)设曲线C1经过伸缩变换$\left\{\begin{array}{l}x'=\frac{{\sqrt{3}}}{2}x\\ y'=\frac{1}{2}y\end{array}\right.$得到曲线C2,求曲线C2的内接矩形周长的最大值.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

20.下列关于空间向量的命题中,正确的有①③④.
①若向量$\overrightarrow{a}$,$\overrightarrow{b}$与空间任意向量都不能构成基底,则$\overrightarrow{a}$∥$\overrightarrow{b}$;
②若非零向量$\overrightarrow{a}$,$\overrightarrow{b}$,$\overrightarrow{c}$满足$\overrightarrow{a}$⊥$\overrightarrow{b}$,$\overrightarrow{b}$⊥$\overrightarrow{c}$则有$\overrightarrow{a}$∥$\overrightarrow{c}$;
③若$\overrightarrow{OA}$,$\overrightarrow{OB}$,$\overrightarrow{OC}$是空间的一组基底,且$\overrightarrow{OD}$=$\frac{1}{3}$$\overrightarrow{OA}$+$\frac{1}{3}$$\overrightarrow{OB}$+$\frac{1}{3}$$\overrightarrow{OC}$,则A,B,C,D四点共面;
④若向量$\overrightarrow{a}$+$\overrightarrow{b}$,$\overrightarrow{b}$+$\overrightarrow{c}$,$\overrightarrow{c}$+$\overrightarrow{a}$,是空间一组基底,则$\overrightarrow{a}$,$\overrightarrow{b}$,$\overrightarrow{c}$也是空间的一组基底.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

10.已知f′(x)是定义在R上的函数f(x)的导函数,f(0)=1,且f′(x)-2f(x)=0,则f(x)>e的解集为($\frac{1}{2}$,+∞).

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

17.{an}是各项均不为0的等差数列,{bn}是等比数列,若a1-a${\;}_{7}^{2}$+a13=0,且b7=a7,则b3b11=(  )
A.16B.8C.4D.2

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

14.求证:
(1)log${\;}_{{a}^{n}}$bn=logab;
(2)logab=$\frac{1}{lo{g}_{b}a}$.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

15.四面体ABCD中,已知AB⊥面BCD,且∠BCD=$\frac{π}{2}$,AB=3,BC=4,CD=5.
(1)求证:平面ABC⊥平面ACD;
(2)求此四面体ABCD的体积和表面积;
(3)求此四面体ABCD的外接球半径和内切球半径.

查看答案和解析>>

同步练习册答案