精英家教网 > 高中数学 > 题目详情

地面上有一旗杆OP,如图1-2(3)-17,为了测得它的高度,在地面上选一基线AB,测得AB=20 m,在A处测得点P的仰角为30°,在B处测得点P的仰角为45°,同时可测得∠AOB=60°,求旗杆的高度.

 

 

思路分析:设旗杆的高度为h,由题意知∠OAP=30°,∠OBP=45°,旗杆OP垂直于地面,即△AOP和△BOP都是直角三角形,在△AOB中,可利用余弦定理构造方程求解.

    解:设旗杆的高度为h,由题意知∠OAP=30°,∠OBP=45°.

    在Rt△AOP中,OA=OPcot30°=h,

    在Rt△BOP中,OA=OBcot45°=h.

    在△AOB中,由余弦定理,得

    AB2=OA2+OB2-2OA·OBcos60°,

    即202=(h)2+h2-23h×h×.

    ∴h2=≈176.4.

    ∴h≈13.

    ∴旗杆的高度为13m.


练习册系列答案
相关习题

科目:高中数学 来源: 题型:

地面上有一旗杆OP,如图,为了测得它的高度,在地面上选一基线AB,测得AB=20m,在A处测得点P的仰角为30°,在B处测得点P的仰角为45°,同时可测得∠AOB=30°,求旗杆的高度.

查看答案和解析>>

科目:高中数学 来源:2012年北师大版高中数学必修5 2.2三角形中的几何计算练习卷(解析版) 题型:解答题

已知地面上有一旗杆OP,为了测得其高度h,地面上取一基线AB,AB=20米,在A处测得P点的仰角∠OAP=30°,在B处测得P点的仰角∠OBP=45°,又知∠AOB=60°,求旗杆的高度h.

 

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

地面上有一旗杆OP,如图,为了测得它的高度,在地面上选一基线AB,测得AB=20m,在A处测得点P的仰角为30°,在B处测得点P的仰角为45°,同时可测得∠AOB=30°,求旗杆的高度.

查看答案和解析>>

科目:高中数学 来源: 题型:

地面上有一旗杆OP,如图1-2(3)-17,为了测得它的高度,在地面上选一基线AB,测得AB=20 m,在A处测得点P的仰角为30°,在B处测得点P的仰角为45°,同时可测得∠AOB=60°,求旗杆的高度.

   

查看答案和解析>>

同步练习册答案