精英家教网 > 高中数学 > 题目详情
求下列三角函数式的值.
(1)
sin47°-sin17°cos30°
cos17°

(2)若tanα=2,求
sin2α
1+cos2α
的值.
考点:同角三角函数基本关系的运用,两角和与差的正弦函数
专题:三角函数的求值
分析:(1)由条件利用两角和的正弦公式求得所给式子的值.
(2)由条件利用二倍角公式、同角三角函数的基本关系,求得要求式子的值.
解答: 解:(1)
sin47°-sin17°cos30°
cos17°
=
sin(17°+30°)-sin17°cos30°
cos17°
=
sin17°cos30°+coa17°sin30°-sin17°cos30°
cs17°
=
cos17°sin30°
cos17°
=sin30°=
1
2

(2)∵tanα=2,∴
sin2α
1+cos2α
=
2sinαcosα
1+2cos2α-1
=
2sinαcosα
2cos2α
=tanα=2.
点评:本题主要考查同角三角函数的基本关系,两角和差的正弦公式、二倍角公式的应用,属于基础题.
练习册系列答案
相关习题

科目:高中数学 来源: 题型:

已知
a
=(cos36°,sin36°),
b
=(cos84°,cos186°),则
a
b
=
 

查看答案和解析>>

科目:高中数学 来源: 题型:

已知动圆∴a2+c2-b2=
2
3
ac,b=2过定点M(0,2),且在x轴上截得弦长为4.设该动圆圆心的轨迹为曲线C
(1)求曲线C方程;
(2)点A为直线l:x-y-2=0上任意一点,过A作曲线C的切线,切点分别为P、Q,△APQ面积的最小值及此时点A的坐标.

查看答案和解析>>

科目:高中数学 来源: 题型:

已知抛物线D的顶点是椭圆C:
x2
16
+
y2
15
=1的中心,焦点与该椭圆的右焦点重合.
(1)求抛物线D的方程;
(2)过椭圆C右顶点A的直线l交抛物线D于M、N两点.
①若直线l的斜率为1,求MN的长;
②是否存在垂直于x轴的直线m被以MA为直径的圆E所截得的弦长为定值?如果存在,求出m的方程;如果不存在,说明理由.

查看答案和解析>>

科目:高中数学 来源: 题型:

对于任意两实数a,b,定义运算“⊕”如下:a⊕b=
a,a≤b
b,a>b
,设函数f(x)=log
1
2
(3x-2)⊕log2x,若f(n)=-1,求实数n的值.

查看答案和解析>>

科目:高中数学 来源: 题型:

已知log73=a,7b=4,用a,b表示log4948是
 

查看答案和解析>>

科目:高中数学 来源: 题型:

如图,已知半圆O的半径为8cm,C,D为半圆的两个三等分点,E,F分别为OA,OB的中点,求
EC
FD
的值.

查看答案和解析>>

科目:高中数学 来源: 题型:

已知函数f(x)=ln(x+1)+ax2-x,a∈R.
(Ⅰ)当a=
1
4
时,求函数y=f(x)的极值;
(Ⅱ)若对任意实数b∈(1,2),当x∈(-1,b]时,函数f(x)的最大值为f(b),求a的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:

用消元法解方程组:
4x-3y=50
x2+y2=10

查看答案和解析>>

同步练习册答案