精英家教网 > 高中数学 > 题目详情

【题目】下表提供了工厂技术改造后某种型号设备的使用年限x和所支出的维修费y(万元)的几组对照数据:

x(年)

2

3

4

5

6

y(万元)

1

2.5

3

4

4.5

1)若知道yx呈线性相关关系,请根据上表提供的数据,用最小二乘法求出y关于x的线性回归方程

2)已知该工厂技术改造前该型号设备使用10年的维修费用为9万元,试根据(1)求出的线性回归方程,预测该型号设备技术改造后,使用10年的维修费用能否比技术改造前降低?参考公式:.

【答案】12,能

【解析】

(1)先计算,再代入公式进行计算即可.

(2)代入(1)中所求的方程,再判断即可.

1)根据所给表格数据计算得,, , ,

,,所以,y关于x的线性回归方程为.

2)由(1)得,当时,,即技术改造后的10年的维修费用为8.1万元,相比技术改造前,该型号的设备维修费降低了0.9万元.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:

【题目】某中学随机选取了名男生,将他们的身高作为样本进行统计,得到如图所示的频率分布直方图.观察图中数据,完成下列问题.

(Ⅰ)求的值及样本中男生身高在(单位: )的人数;

假设同一组中的每个数据可用该组区间的中点值代替,通过样本估计该校全体男生的平均身高;

(Ⅲ)在样本中,从身高在(单位: )内的男生中任选两人,求这两人的身高都不低于的概率.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知函数

1)当=0时,求实数的m值及曲线在点(1 )处的切线方程;

2)讨论函数的单调性.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】如图,在四棱锥中,四边形为正方形, 平面 上一点,且.

(1)求证: 平面

(2)求直线与平面所成角的正弦值.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知函数.

(1)讨论函数的单调性;

(2) 若函数有两个零点 ,且,证明: .

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知某校有歌唱和舞蹈两个兴趣小组,其中歌唱组有 4 名男生,1 名女生,舞蹈组有2 名男生,2 名女生,学校计划从两兴趣小组中各选2名同学参加演出.

(1)求选出的4名同学中至多有2名女生的选派方法数;

(2)记X为选出的4名同学中女生的人数,求X的分布列和数学期望.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】设椭圆的左右焦点分别为F1F2,点P 在椭圆上运动, 的最大值为m 的最小值为n,且m≥2n,则该椭圆的离心率的取值范围为________

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】(本小题满分13分)已知函数为常数,

(1)若是函数的一个极值点,求的值;

(2)求证:当时,上是增函数;

(3)若对任意的,总存在,使不等式成立,求正实数的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】某家庭进行理财投资,根据长期收益率市场预测,投资债券等稳健型产品的年收益与投资额成正比,投资股票等风险型产品的年收益与投资额的算术平方根成正比.已知投资1万元时两类产品的年收益分别为0.125万元和0.5万元(如图).

1)分别写出两种产品的年收益与投资额的函数关系式;

2)该家庭现有20万元资金,全部用于理财投资,问:怎么分配资金能使投资获得最大年收益,其最大年收益是多少万元?

查看答案和解析>>

同步练习册答案