精英家教网 > 高中数学 > 题目详情
已知函数y=x2+(2m+1)x+m2-1(m为实数)
(1)m是什么数值时,y的极值是0?
(2)求证:不论m是什么数值,函数图象(即抛物线)的顶点都在同一条直线L1上.
分析:(1)二次函数研究极值问题,可利用配方法研究极值,根据y的极值是0建立等量关系.
(2)先求出函数图象抛物线的顶点坐标,根据点的横坐标与纵坐标消取参数m即可得顶点轨迹,再进一步验证即可.
解答:解:(1)用配方法得:y=(x+
2m+1
2
)2-
4m+5
4
∴的极小值为-
4m+5
4
.所以当极值为0时,4m+5=0,m=-
5
4

(2)函数图象抛物线的顶点坐标为(-
2m+1
2
,-
4m+5
4
)

x=-
2m+1
2
=-m-
1
2
,y=-
4m+5
4
=-m-
5
4

二式相减得:-y=
3
4
,此即各抛物线顶点坐标所满足的方程它的图象是一条直线,方程中不含m,因此,不论m是什么值,抛物线的顶点都在这条直线上.
点评:本题主要考查了利用导数研究函数的极值,以及抛物线的应用,属于中档题.
练习册系列答案
相关习题

科目:高中数学 来源: 题型:

15、已知函数y=x2+2x-3,分别求它在下列区间上的值域.
(1)x∈R;
(2)x∈[0,+∞).

查看答案和解析>>

科目:高中数学 来源: 题型:

16、已知函数y=-x2+4x-2,若x∈(3,5),求函数的值域.

查看答案和解析>>

科目:高中数学 来源: 题型:

16、已知函数y=-x2+4x-2
(1)若x∈[0,5],求该函数的单调增区间;
(2)若x∈[0,3],求该函数的最大值.最小值;
(3)若x∈(3,5),求函数的值域.

查看答案和解析>>

科目:高中数学 来源: 题型:

已知函数y=x2-2x+9分别求下列条件下的值域
(1)定义域是{x|3<x≤8};
(2)定义域是{x|-3<x≤2}.

查看答案和解析>>

科目:高中数学 来源: 题型:

已知函数y=x2-x-4的定义域为[m,n],值域为[-
17
4
,-4]
,则m+n的取值范围为(  )

查看答案和解析>>

同步练习册答案