精英家教网 > 高中数学 > 题目详情
8.已知tanα=2,求下列各式的值
(Ⅰ)$\frac{4sinα-2cosα}{5cosα+3sinα}$
(Ⅱ)$\frac{1}{4}{sin^2}α+\frac{1}{3}sinαcosα+\frac{1}{2}{cos^2}α+1$.

分析 由条件利用同角三角函数的基本关系,求得所给式子的值.

解答 解:∵已知tanα=2,(Ⅰ)∴$\frac{4sinα-2cosα}{5cosα+3sinα}$=$\frac{4tanα-2}{5+3tanα}$=$\frac{8-2}{5+6}$=$\frac{6}{11}$.
(Ⅱ)$\frac{1}{4}{sin^2}α+\frac{1}{3}sinαcosα+\frac{1}{2}{cos^2}α+1$=$\frac{\frac{1}{4}{•sin}^{2}α+\frac{1}{3}sinαcosα+\frac{1}{2}{•cos}^{2}α}{{sin}^{2}α{+cos}^{2}α}$+1
=$\frac{\frac{1}{4}{•tan}^{2}α+\frac{1}{3}tanα+\frac{1}{2}}{{tan}^{2}α+1}$+1=$\frac{1+\frac{2}{3}+\frac{1}{2}}{4+1}$+1=$\frac{43}{30}$.

点评 本题主要考查同角三角函数的基本关系的应用,属于基础题.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:解答题

18.已知向量$\overrightarrow{a}$=($\sqrt{2}$sinx,$\frac{{\sqrt{2}}}{2}$(cosx+sinx)),$\overrightarrow{b}$=(2cosx,sinx-cosx),函数f(x)=$\overrightarrow{a}$•$\overrightarrow{b}$.
(Ⅰ)求y=f(x)的单调递增区间;
(Ⅱ)在给定直角坐标系中,画出函数f(x)在区间[0,π]上的图象.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

19.已知角α终边经过点 P(-5,-12),则 tanα 的值是(  )
A.$\frac{12}{5}$B.-$\frac{12}{5}$C.$\frac{5}{12}$D.-$\frac{5}{12}$

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

16.f(x)=logax,g(x)=2loga(2x+t-2),(a>0,a≠1,t∈R).
(1)当$t=4,x∈[{\frac{1}{4},2}]$时,F(x)=g(x)-f(x)的最小值是-2,求a的值;
(2)当$0<a<1,x∈[{\frac{1}{4},2}]$时,有f(x)≥g(x)恒成立,求实数t的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

3.已知函数y=loga(x+c)(a>0且a≠1,a,c为常数)的图象如图,则下列结论正确的是(  )
A.a>0,c>1B.a>1,0<c<1C.0<a<1,0<c<1D.0<a<1,c>1

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

13.已知直线m,l和平面α,β,且l⊥α,m?β,给出下列四个命题:
①α∥β⇒l⊥m②α⊥β⇒l∥m③l∥m⇒α⊥β④l⊥m⇒α∥β
其中真命题的有①③(请填写全部正确命题的序号)

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

20.实数a>1,b>1是a+b>2的(  )
A.充分不必要条件B.必要不充分条件
C.充要条件D.既不充分也不必要条件

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

17.已知不等式组$\left\{\begin{array}{l}{x≥0}\\{y≥0}\\{x+2y-4≤0}\end{array}\right.$表示的平面区域恰好被面积最小的圆C:(x-a)2+(y-b)2=r2及其内部所覆盖,则圆C的方程为(  )
A.(x-1)2+(y-2)2=5B.(x-2)2+(y-1)2=8C.(x-4)2+(y-1)2=6D.(x-2)2+(y-1)2=5

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

18.下列函数中,在区间(1,+∞)上为增函数的是(  )
A.y=-3x+1B.y=$\frac{2}{x}$C.y=x2-4x+5D.y=|x-1|+2

查看答案和解析>>

同步练习册答案