【题目】某城市在进行创建文明城市的活动中,为了解居民对“创文”的满意程度,组织居民给活动打分(分数为整数.满分为100分).从中随机抽取一个容量为120的样本.发现所有数据均在内.现将这些分数分成以下6组并画出了样本的频率分布直方图,但不小心污损了部分图形,如图所示.观察图形,回答下列问题:
(1)算出第三组的频数.并补全频率分布直方图;
(2)请根据频率分布直方图,估计样本的众数、中位数和平均数.(每组数据以区间的中点值为代表)
【答案】(1)18人,见解析;(2)众数为75分,中位数为75分,平均数为73.5分
【解析】
(1)先求出分数在内的频率,再求第三组的频数,补全频率分布直方图;(2)利用频率分布直方图中的众数、中位数和平均数的求解方法求解即可.
(1)因为各组的频率之和等于1,所以分数在内的频率为:
,
所以第三组的额数为(人).完整的频率分布直方图如图.
(2)因为众数的估计值是频率分布直方图中最高矩形的中点,从图中可看出众数的估计值为75分.
由题得左边第一个矩形的面积为0.05,第二个矩形的面积为0.15,第三个矩形的面积为0.15,第四个矩形的面积为0.3,所以中位数在第四个矩形里面,设中位数为x,
则0.05+0.15+0.15+(x-70)×0.03=0.5,
所以x=75.所以中位数为75.
又根据频率分布直方图,样本的平均数的估计值为:(分).
所以样本的众数为75分,中位数为75分,平均数为73.5分.
科目:高中数学 来源: 题型:
【题目】数学家欧拉在1765年发现,任意三角形的外心、重心、垂心位于同一条直线上,这条直线称为欧拉线已知的顶点,若其欧拉线的方程为,则顶点的坐标为( )
A. B. C. D.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】2018年为我国改革开放40周年,某事业单位共有职工600人,其年龄与人数分布表如下:
年龄段 | ||||
人数(单位:人) | 180 | 180 | 160 | 80 |
约定:此单位45岁~59岁为中年人,其余为青年人,现按照分层抽样抽取30人作为全市庆祝晚会的观众.
(1)抽出的青年观众与中年观众分别为多少人?
(2)若所抽取出的青年观众与中年观众中分别有12人和5人不热衷关心民生大事,其余人热衷关心民生大事.完成下列列联表,并回答能否有的把握认为年龄层与热衷关心民生大事有关?
热衷关心民生大事 | 不热衷关心民生大事 | 总计 | |
青年 | 12 | ||
中年 | 5 | ||
总计 | 30 |
(3)若从热衷关心民生大事的青年观众(其中1人擅长歌舞,3人擅长乐器)中,随机抽取2人上台表演节目,则抽出的2人能胜任才艺表演的概率是多少?
0.100 | 0.050 | 0.025 | 0.010 | 0.001 | |
2.706 | 3.841 | 5.024 | 6.635 | 10.828 |
.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】如图,四边形ABCD是梯形,AD∥BC,∠BAD=90°,四边形CC1D1D为矩形,已知AB⊥BC1,AD=4,AB=2,BC=1.
(I)求证:BC1∥平面ADD1;
(II)若DD1=2,求平面AC1D1与平面ADD1所成的锐二面角的余弦值;
(III)设P为线段C1D上的一个动点(端点除外),判断直线BC1与直线CP能否垂直?并说明理由.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】如图,已知椭圆C: (a>b>0)的离心率为,F为椭圆C的右焦点.A(-a,0),|AF|=3.
(I)求椭圆C的方程;
(II)设O为原点,P为椭圆上一点,AP的中点为M.直线OM与直线x=4交于点D,过O且平行于AP的直线与直线x=4交于点E.求证:∠ODF=∠OEF.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】1642年,帕斯卡发明了一种可以进行十进制加减法的机械计算机年,莱布尼茨改进了帕斯卡的计算机,但莱布尼兹认为十进制的运算在计算机上实现起来过于复杂,随即提出了“二进制”数的概念之后,人们对进位制的效率问题进行了深入的研究研究方法如下:对于正整数,,我们准备张不同的卡片,其中写有数字0,1,…,的卡片各有张如果用这些卡片表示位进制数,通过不同的卡片组合,这些卡片可以表示个不同的整数例如,时,我们可以表示出共个不同的整数假设卡片的总数为一个定值,那么进制的效率最高则意味着张卡片所表示的不同整数的个数最大根据上述研究方法,几进制的效率最高?
A. 二进制 B. 三进制 C. 十进制 D. 十六进制
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】恩格尔系数(记为)是指居民的食物支出占家庭消费总支出的比重.国际上常用恩格尔系数来衡量一个国家和地区人民生活水平的状况.联合国对消费水平的规定标准如下表:
家庭类型 | 贫穷 | 温饱 | 小康 | 富裕 | 最富裕 |
实施精准扶贫以来,根据对某山区贫困家庭消费支出情况(单位:万元)的抽样调查,2018年每个家庭平均消费支出总额为2万元,其中食物消费支出为1.2万元预测2018年到2020年每个家庭平均消费支出总额每年的增长率约是30%,而食物消费支出平均每年增加0.2万元,预测该山区的家庭2020年将处于( )
A.贫困水平B.温饱水平C.小康水平D.富裕水平
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】已知函数f(x)=lnxx2,g(x)x2+x,m∈R,令F(x)=f(x)+g(x).
(Ⅰ)求函数f(x)的单调递增区间;
(Ⅱ)若关于x的不等式F(x)≤mx﹣1恒成立,求整数m的最小值;
(Ⅲ)若m=﹣1,且正实数x1,x2满足F(x1)=﹣F(x2),求证:x1+x21.
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com