精英家教网 > 高中数学 > 题目详情
已知关于x的一元二次方程x2+2x+2k-4=0有两个不相等的实数根
(1)求k的取值范围;
(2)若k为正整数,且该方程的根都是整数,求k的值.
分析:(1)根据一元二次方程的根的判别式,建立关于k的不等式,求出k的取值范围;
(2)先确定k=1或2,再根据方程的根都是整数,可知20-8k是完全平方数,即可求k的值.
解答:解:(1)关于x的一元二次方程x2+2x+2k-4=0中,
∴a=1,b=2,c=2k-4,
∵方程有两个不相等的实数根,
∴△=b2-4ac=20-8k>0,
∴k<
5
2

(2)∵k为正整数,k<
5
2

∴k=1或2,
∵方程的根都是整数,
∴20-8k是完全平方数,
∴k=2.
点评:本题考查一元二次方程的根的问题,考查学生的计算能力,正确运用一元二次方程的根的判别式是关键.
练习册系列答案
相关习题

科目:高中数学 来源: 题型:

已知关于x的一元二次函数f(x)=ax2-4bx+1.
(1)设集合P={1,2,3}和Q={-1,1,2,3,4},分别从集合P和Q中随机取一个数作为a和b,求函数y=f(x)在区间[1,+∞)上是增函数的概率;
(2)设点(a,b)是区域
x+y-8≤0
x>0
y>0
内的随机点,求y=f(x)在区间[1,+∞)上是增函数的概率.

查看答案和解析>>

科目:高中数学 来源: 题型:

(1)在一个红绿灯路口,红灯、黄灯和绿灯的时间分别为30秒、5秒和40秒.当你到达路口时,求不是红灯的概率.
(2)已知关于x的一元二次函数f(x)=ax2-4bx+1.设集合P={1,2,3}和Q={-1,1,2,3,4},分别从集合P和Q中随机取一个数作为a和b,求函数y=f(x)在区间[1,+∞)上是增函数的概率.

查看答案和解析>>

科目:高中数学 来源: 题型:

已知关于x的一元二次函数f(x)=ax2-4bx+1.
(Ⅰ)设集合P={1,2,3}和Q={-1,1,2,3,4},分别从集合P和Q中随机取一个数作为a和b,求函数y=f(x)在区间[|m+n|2上是增函数的概率;
(Ⅱ)设点(
1
2
|m+n|min=
2
2
)是区域
x+y-8≤0
x>0
y>0
内的随机点,求MD上是增函数的概率.

查看答案和解析>>

科目:高中数学 来源: 题型:

已知关于x的一元二次不等式ax2+bx+c>0的解集为(-2,3),则关于x的不等式cx+b
x
+a<0的解集为
[0,
1
9
[0,
1
9

查看答案和解析>>

科目:高中数学 来源: 题型:

(2011•蓝山县模拟)已知关于x的一元二次不等式ax2+bx+c≥0在实数集上恒成立,且a<b,则T=
a+b+cb-a
的最小值为
3
3

查看答案和解析>>

同步练习册答案