精英家教网 > 高中数学 > 题目详情

【题目】已知函数的定义域为[-1,5],部分对应值如下表,的导函数的图象如图所示,下列关于的命题:

-1

0

4

5

1

2

2

1

①函数的极大值点为0,4;

②函数在[0,2]上是减函数;

③如果当时,的最大值是2,那么的最大值为4;

④当时,函数有4个零点.

其中正确命题的序号是__________

【答案】①②

【解析】试题分析:

①导函数图象在和4处导数为0,且导数符号由正到负,函数先增后减,函数的极大值点为0,4,正确;
②导函数图象在 处恒在x轴下侧,,函数上是减函数,正确;
③如果当时,的最大值是2,那么t的最大值为5,而不是4,错误;
④由导函数图象得,函数在,2,4处取得极值2,,2,而当x取端点值,
则当时,函数的值域为,结合函数性质,当时,函数有4个零点;
则当时,函数的值域为,结合函数性质,当时,函数有2个零点;
综上当时,函数有2或4个零点,(4)错误.
因此,本题正确答案是: ①②.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:

【题目】下列命题中正确的是

A. 若直线与平面平行,则与平面内的任意一条直线都没有公共点;

B. 若直线与平面平行,则与平面内的任意一条直线都平行;

C. 若直线上有无数个点不在平面 内,则;

D. 如果两条平行线中的一条与一个平面平行,那么另一条也与这个平面平行.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知函数.

(1)讨论函数的单调区间;

(2)若 恒成立,求的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知二次函数,关于实数的不等式的解集为

1时,解关于的不等式:

2是否存在实数,使得关于的函数的最小值为-5?若存在,求实数的值;若不存在,说明理由.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】如图,在直三棱柱中,点分别在棱上(均异于端点),且.

(1)求证:平面平面

(2)求证: 平面.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】选修4-4:坐标系与参数方程

知圆锥曲线参数和定点此圆锥曲线的左、右焦点,以原点,以的正半轴为极轴建立极坐标系.

1直线直角坐标方程;

2过点与直线直的直线此圆锥曲线于两点,求值.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知函数.

1函数区间是减函数,求实数取值范围;

2函数时,成立,求取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知圆 ,直线 .

(Ⅰ)求直线被圆所截得的弦长最短时的值及最短弦长;

(Ⅱ)已知坐标轴上点和点满足:存在圆上的两点,使得,求实数的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】以下茎叶图记录了甲,乙两组各四名同学的植树棵数.乙组记录中有一个数据模糊,无法确认,在图中以表示.

1)如果,求乙组同学植树棵数的平均数和方差;

2)如果,分别从甲,乙两组中随机选取一名同学,求这两名同学的植树总棵数为19的概率.(注:方差,其中……的平均数)

查看答案和解析>>

同步练习册答案