【题目】抛物线的焦点为,是抛物线上关于轴对称的两点,点是抛物线准线与轴的交点,是面积为的直角三角形.
(1)求抛物线的方程;
(2)点在抛物线上,是直线上不同的两点,且线段的中点都在抛物线上,试用表示.
科目:高中数学 来源: 题型:
【题目】(1)已知数列的通项公式:,试求最大项的值;
(2)记,且满足(1),若成等比数列,求p的值;
(3)如果,,,且p是满足(2)的正常数,试证:对于任意自然数n,或者都满足,,或者都满足,.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】某小区有一块三角形空地,如图△ABC,其中AC=180米,BC=90米,∠C=90°,开发商计划在这片空地上进行绿化和修建运动场所,在△ABC内的P点处有一服务站(其大小可忽略不计),开发商打算在AC边上选一点D,然后过点P和点D画一分界线与边AB相交于点E,在△ADE区域内绿化,在四边形BCDE区域内修建运动场所. 现已知点P处的服务站与AC距离为10米,与BC距离为100米. 设米,试问取何值时,运动场所面积最大?
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】在平面直角坐标系xOy中,曲线C的参数方程为(α为参数),在以坐标原点O为极点,x轴的正半轴为极轴的极坐标系中,点P的极坐标为,直线l的极坐标方程为.
(1)求直线l的直角坐标方程与曲线C的普通方程;
(2)若Q是曲线C上的动点,M为线段PQ的中点,直线l上有两点A,B,始终满足|AB|=4,求△MAB面积的最大值与最小值.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】设抛物线的焦点为,经过轴正半轴上点的直线交于不同的两点和.
(1)若,求点的坐标;
(2)若,求证:原点总在以线段为直径的圆的内部;
(3)若,且直线∥,与有且只有一个公共点,问:△的面积是否存在最小值?若存在,求出最小值,并求出点的坐标,若不存在,请说明理由.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】已知△ABC的三个内角A,B,C所对的边分别是a,b,c,向量=(cos B,cos C),=(2a+c,b),且⊥.
(1)求角B的大小;
(2)若b=,求a+c的范围.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】某商场举行购物抽奖促销活动,规定每位顾客从装有0、1、2、3的四个相同小球的抽奖箱中,每次取出一球记下编号后放回(连续取两次),若取出的两个小球的编号相加之和等于6,则中一等奖,等于5中二等奖,等于4或3中三等奖,则顾客抽奖中三等奖的概率为____________.
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com